Package org.apache.commons.math4.legacy.ml.clustering
Clustering algorithms.
-
Interface Summary Interface Description Clusterable Interface for n-dimensional points that can be clustered together.ClusterEvaluator Defines a measure of the quality of clusters.ClusterRanking Evaluates the quality of a set of clusters. -
Class Summary Class Description CentroidCluster<T extends Clusterable> A Cluster used by centroid-based clustering algorithms.Cluster<T extends Clusterable> Cluster holding a set ofClusterable
points.Clusterer<T extends Clusterable> Base class for clustering algorithms.DBSCANClusterer<T extends Clusterable> DBSCAN (density-based spatial clustering of applications with noise) algorithm.DoublePoint A simple implementation ofClusterable
for points with double coordinates.ElkanKMeansPlusPlusClusterer<T extends Clusterable> Implementation of k-means++ algorithm.FuzzyKMeansClusterer<T extends Clusterable> Fuzzy K-Means clustering algorithm.KMeansPlusPlusClusterer<T extends Clusterable> Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.MiniBatchKMeansClusterer<T extends Clusterable> Clustering algorithm based on KMeans.MultiKMeansPlusPlusClusterer<T extends Clusterable> A wrapper around a k-means++ clustering algorithm which performs multiple trials and returns the best solution. -
Enum Summary Enum Description KMeansPlusPlusClusterer.EmptyClusterStrategy Strategies to use for replacing an empty cluster.