1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.math4.legacy.analysis.polynomials; 18 19 import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure; 20 import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction; 21 import org.apache.commons.math4.legacy.exception.DimensionMismatchException; 22 import org.apache.commons.math4.legacy.exception.NoDataException; 23 import org.apache.commons.math4.legacy.exception.NullArgumentException; 24 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats; 25 26 /** 27 * Implements the representation of a real polynomial function in 28 * Newton Form. For reference, see <b>Elementary Numerical Analysis</b>, 29 * ISBN 0070124477, chapter 2. 30 * <p> 31 * The formula of polynomial in Newton form is 32 * p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... + 33 * a[n](x-c[0])(x-c[1])...(x-c[n-1]) 34 * Note that the length of a[] is one more than the length of c[]</p> 35 * 36 * @since 1.2 37 */ 38 public class PolynomialFunctionNewtonForm implements UnivariateDifferentiableFunction { 39 40 /** 41 * The coefficients of the polynomial, ordered by degree -- i.e. 42 * coefficients[0] is the constant term and coefficients[n] is the 43 * coefficient of x^n where n is the degree of the polynomial. 44 */ 45 private double[] coefficients; 46 47 /** 48 * Centers of the Newton polynomial. 49 */ 50 private final double[] c; 51 52 /** 53 * When all c[i] = 0, a[] becomes normal polynomial coefficients, 54 * i.e. a[i] = coefficients[i]. 55 */ 56 private final double[] a; 57 58 /** 59 * Whether the polynomial coefficients are available. 60 */ 61 private boolean coefficientsComputed; 62 63 /** 64 * Construct a Newton polynomial with the given a[] and c[]. The order of 65 * centers are important in that if c[] shuffle, then values of a[] would 66 * completely change, not just a permutation of old a[]. 67 * <p> 68 * The constructor makes copy of the input arrays and assigns them.</p> 69 * 70 * @param a Coefficients in Newton form formula. 71 * @param c Centers. 72 * @throws NullArgumentException if any argument is {@code null}. 73 * @throws NoDataException if any array has zero length. 74 * @throws DimensionMismatchException if the size difference between 75 * {@code a} and {@code c} is not equal to 1. 76 */ 77 public PolynomialFunctionNewtonForm(double[] a, double[] c) 78 throws NullArgumentException, NoDataException, DimensionMismatchException { 79 80 verifyInputArray(a, c); 81 this.a = new double[a.length]; 82 this.c = new double[c.length]; 83 System.arraycopy(a, 0, this.a, 0, a.length); 84 System.arraycopy(c, 0, this.c, 0, c.length); 85 coefficientsComputed = false; 86 } 87 88 /** 89 * Calculate the function value at the given point. 90 * 91 * @param z Point at which the function value is to be computed. 92 * @return the function value. 93 */ 94 @Override 95 public double value(double z) { 96 return evaluate(a, c, z); 97 } 98 99 /** 100 * {@inheritDoc} 101 * @since 3.1 102 */ 103 @Override 104 public DerivativeStructure value(final DerivativeStructure t) { 105 verifyInputArray(a, c); 106 107 final int n = c.length; 108 DerivativeStructure value = new DerivativeStructure(t.getFreeParameters(), t.getOrder(), a[n]); 109 for (int i = n - 1; i >= 0; i--) { 110 value = t.subtract(c[i]).multiply(value).add(a[i]); 111 } 112 113 return value; 114 } 115 116 /** 117 * Returns the degree of the polynomial. 118 * 119 * @return the degree of the polynomial 120 */ 121 public int degree() { 122 return c.length; 123 } 124 125 /** 126 * Returns a copy of coefficients in Newton form formula. 127 * <p> 128 * Changes made to the returned copy will not affect the polynomial.</p> 129 * 130 * @return a fresh copy of coefficients in Newton form formula 131 */ 132 public double[] getNewtonCoefficients() { 133 double[] out = new double[a.length]; 134 System.arraycopy(a, 0, out, 0, a.length); 135 return out; 136 } 137 138 /** 139 * Returns a copy of the centers array. 140 * <p> 141 * Changes made to the returned copy will not affect the polynomial.</p> 142 * 143 * @return a fresh copy of the centers array. 144 */ 145 public double[] getCenters() { 146 double[] out = new double[c.length]; 147 System.arraycopy(c, 0, out, 0, c.length); 148 return out; 149 } 150 151 /** 152 * Returns a copy of the coefficients array. 153 * <p> 154 * Changes made to the returned copy will not affect the polynomial.</p> 155 * 156 * @return a fresh copy of the coefficients array. 157 */ 158 public double[] getCoefficients() { 159 if (!coefficientsComputed) { 160 computeCoefficients(); 161 } 162 double[] out = new double[coefficients.length]; 163 System.arraycopy(coefficients, 0, out, 0, coefficients.length); 164 return out; 165 } 166 167 /** 168 * Evaluate the Newton polynomial using nested multiplication. It is 169 * also called <a href="http://mathworld.wolfram.com/HornersRule.html"> 170 * Horner's Rule</a> and takes O(N) time. 171 * 172 * @param a Coefficients in Newton form formula. 173 * @param c Centers. 174 * @param z Point at which the function value is to be computed. 175 * @return the function value. 176 * @throws NullArgumentException if any argument is {@code null}. 177 * @throws NoDataException if any array has zero length. 178 * @throws DimensionMismatchException if the size difference between 179 * {@code a} and {@code c} is not equal to 1. 180 */ 181 public static double evaluate(double[] a, double[] c, double z) 182 throws NullArgumentException, DimensionMismatchException, NoDataException { 183 verifyInputArray(a, c); 184 185 final int n = c.length; 186 double value = a[n]; 187 for (int i = n - 1; i >= 0; i--) { 188 value = a[i] + (z - c[i]) * value; 189 } 190 191 return value; 192 } 193 194 /** 195 * Calculate the normal polynomial coefficients given the Newton form. 196 * It also uses nested multiplication but takes O(N^2) time. 197 */ 198 protected void computeCoefficients() { 199 final int n = degree(); 200 201 coefficients = new double[n+1]; 202 for (int i = 0; i <= n; i++) { 203 coefficients[i] = 0.0; 204 } 205 206 coefficients[0] = a[n]; 207 for (int i = n-1; i >= 0; i--) { 208 for (int j = n-i; j > 0; j--) { 209 coefficients[j] = coefficients[j-1] - c[i] * coefficients[j]; 210 } 211 coefficients[0] = a[i] - c[i] * coefficients[0]; 212 } 213 214 coefficientsComputed = true; 215 } 216 217 /** 218 * Verifies that the input arrays are valid. 219 * <p> 220 * The centers must be distinct for interpolation purposes, but not 221 * for general use. Thus it is not verified here.</p> 222 * 223 * @param a the coefficients in Newton form formula 224 * @param c the centers 225 * @throws NullArgumentException if any argument is {@code null}. 226 * @throws NoDataException if any array has zero length. 227 * @throws DimensionMismatchException if the size difference between 228 * {@code a} and {@code c} is not equal to 1. 229 * @see org.apache.commons.math4.legacy.analysis.interpolation.DividedDifferenceInterpolator#computeDividedDifference(double[], 230 * double[]) 231 */ 232 protected static void verifyInputArray(double[] a, double[] c) 233 throws NullArgumentException, NoDataException, DimensionMismatchException { 234 NullArgumentException.check(a); 235 NullArgumentException.check(c); 236 if (a.length == 0 || c.length == 0) { 237 throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); 238 } 239 if (a.length != c.length + 1) { 240 throw new DimensionMismatchException(LocalizedFormats.ARRAY_SIZES_SHOULD_HAVE_DIFFERENCE_1, 241 a.length, c.length); 242 } 243 } 244 }