1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.analysis.polynomials;
18
19 import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
20 import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
21 import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
22 import org.apache.commons.math4.legacy.exception.NoDataException;
23 import org.apache.commons.math4.legacy.exception.NullArgumentException;
24 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
25
26 /**
27 * Implements the representation of a real polynomial function in
28 * Newton Form. For reference, see <b>Elementary Numerical Analysis</b>,
29 * ISBN 0070124477, chapter 2.
30 * <p>
31 * The formula of polynomial in Newton form is
32 * p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
33 * a[n](x-c[0])(x-c[1])...(x-c[n-1])
34 * Note that the length of a[] is one more than the length of c[]</p>
35 *
36 * @since 1.2
37 */
38 public class PolynomialFunctionNewtonForm implements UnivariateDifferentiableFunction {
39
40 /**
41 * The coefficients of the polynomial, ordered by degree -- i.e.
42 * coefficients[0] is the constant term and coefficients[n] is the
43 * coefficient of x^n where n is the degree of the polynomial.
44 */
45 private double[] coefficients;
46
47 /**
48 * Centers of the Newton polynomial.
49 */
50 private final double[] c;
51
52 /**
53 * When all c[i] = 0, a[] becomes normal polynomial coefficients,
54 * i.e. a[i] = coefficients[i].
55 */
56 private final double[] a;
57
58 /**
59 * Whether the polynomial coefficients are available.
60 */
61 private boolean coefficientsComputed;
62
63 /**
64 * Construct a Newton polynomial with the given a[] and c[]. The order of
65 * centers are important in that if c[] shuffle, then values of a[] would
66 * completely change, not just a permutation of old a[].
67 * <p>
68 * The constructor makes copy of the input arrays and assigns them.</p>
69 *
70 * @param a Coefficients in Newton form formula.
71 * @param c Centers.
72 * @throws NullArgumentException if any argument is {@code null}.
73 * @throws NoDataException if any array has zero length.
74 * @throws DimensionMismatchException if the size difference between
75 * {@code a} and {@code c} is not equal to 1.
76 */
77 public PolynomialFunctionNewtonForm(double[] a, double[] c)
78 throws NullArgumentException, NoDataException, DimensionMismatchException {
79
80 verifyInputArray(a, c);
81 this.a = new double[a.length];
82 this.c = new double[c.length];
83 System.arraycopy(a, 0, this.a, 0, a.length);
84 System.arraycopy(c, 0, this.c, 0, c.length);
85 coefficientsComputed = false;
86 }
87
88 /**
89 * Calculate the function value at the given point.
90 *
91 * @param z Point at which the function value is to be computed.
92 * @return the function value.
93 */
94 @Override
95 public double value(double z) {
96 return evaluate(a, c, z);
97 }
98
99 /**
100 * {@inheritDoc}
101 * @since 3.1
102 */
103 @Override
104 public DerivativeStructure value(final DerivativeStructure t) {
105 verifyInputArray(a, c);
106
107 final int n = c.length;
108 DerivativeStructure value = new DerivativeStructure(t.getFreeParameters(), t.getOrder(), a[n]);
109 for (int i = n - 1; i >= 0; i--) {
110 value = t.subtract(c[i]).multiply(value).add(a[i]);
111 }
112
113 return value;
114 }
115
116 /**
117 * Returns the degree of the polynomial.
118 *
119 * @return the degree of the polynomial
120 */
121 public int degree() {
122 return c.length;
123 }
124
125 /**
126 * Returns a copy of coefficients in Newton form formula.
127 * <p>
128 * Changes made to the returned copy will not affect the polynomial.</p>
129 *
130 * @return a fresh copy of coefficients in Newton form formula
131 */
132 public double[] getNewtonCoefficients() {
133 double[] out = new double[a.length];
134 System.arraycopy(a, 0, out, 0, a.length);
135 return out;
136 }
137
138 /**
139 * Returns a copy of the centers array.
140 * <p>
141 * Changes made to the returned copy will not affect the polynomial.</p>
142 *
143 * @return a fresh copy of the centers array.
144 */
145 public double[] getCenters() {
146 double[] out = new double[c.length];
147 System.arraycopy(c, 0, out, 0, c.length);
148 return out;
149 }
150
151 /**
152 * Returns a copy of the coefficients array.
153 * <p>
154 * Changes made to the returned copy will not affect the polynomial.</p>
155 *
156 * @return a fresh copy of the coefficients array.
157 */
158 public double[] getCoefficients() {
159 if (!coefficientsComputed) {
160 computeCoefficients();
161 }
162 double[] out = new double[coefficients.length];
163 System.arraycopy(coefficients, 0, out, 0, coefficients.length);
164 return out;
165 }
166
167 /**
168 * Evaluate the Newton polynomial using nested multiplication. It is
169 * also called <a href="http://mathworld.wolfram.com/HornersRule.html">
170 * Horner's Rule</a> and takes O(N) time.
171 *
172 * @param a Coefficients in Newton form formula.
173 * @param c Centers.
174 * @param z Point at which the function value is to be computed.
175 * @return the function value.
176 * @throws NullArgumentException if any argument is {@code null}.
177 * @throws NoDataException if any array has zero length.
178 * @throws DimensionMismatchException if the size difference between
179 * {@code a} and {@code c} is not equal to 1.
180 */
181 public static double evaluate(double[] a, double[] c, double z)
182 throws NullArgumentException, DimensionMismatchException, NoDataException {
183 verifyInputArray(a, c);
184
185 final int n = c.length;
186 double value = a[n];
187 for (int i = n - 1; i >= 0; i--) {
188 value = a[i] + (z - c[i]) * value;
189 }
190
191 return value;
192 }
193
194 /**
195 * Calculate the normal polynomial coefficients given the Newton form.
196 * It also uses nested multiplication but takes O(N^2) time.
197 */
198 protected void computeCoefficients() {
199 final int n = degree();
200
201 coefficients = new double[n+1];
202 for (int i = 0; i <= n; i++) {
203 coefficients[i] = 0.0;
204 }
205
206 coefficients[0] = a[n];
207 for (int i = n-1; i >= 0; i--) {
208 for (int j = n-i; j > 0; j--) {
209 coefficients[j] = coefficients[j-1] - c[i] * coefficients[j];
210 }
211 coefficients[0] = a[i] - c[i] * coefficients[0];
212 }
213
214 coefficientsComputed = true;
215 }
216
217 /**
218 * Verifies that the input arrays are valid.
219 * <p>
220 * The centers must be distinct for interpolation purposes, but not
221 * for general use. Thus it is not verified here.</p>
222 *
223 * @param a the coefficients in Newton form formula
224 * @param c the centers
225 * @throws NullArgumentException if any argument is {@code null}.
226 * @throws NoDataException if any array has zero length.
227 * @throws DimensionMismatchException if the size difference between
228 * {@code a} and {@code c} is not equal to 1.
229 * @see org.apache.commons.math4.legacy.analysis.interpolation.DividedDifferenceInterpolator#computeDividedDifference(double[],
230 * double[])
231 */
232 protected static void verifyInputArray(double[] a, double[] c)
233 throws NullArgumentException, NoDataException, DimensionMismatchException {
234 NullArgumentException.check(a);
235 NullArgumentException.check(c);
236 if (a.length == 0 || c.length == 0) {
237 throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
238 }
239 if (a.length != c.length + 1) {
240 throw new DimensionMismatchException(LocalizedFormats.ARRAY_SIZES_SHOULD_HAVE_DIFFERENCE_1,
241 a.length, c.length);
242 }
243 }
244 }