1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.analysis.polynomials;
18
19 import java.util.Arrays;
20
21 import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
22 import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
23 import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
24 import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException;
25 import org.apache.commons.math4.legacy.exception.NullArgumentException;
26 import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
27 import org.apache.commons.math4.legacy.exception.OutOfRangeException;
28 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
29 import org.apache.commons.math4.legacy.core.MathArrays;
30
31 /**
32 * Represents a polynomial spline function.
33 * <p>
34 * A <strong>polynomial spline function</strong> consists of a set of
35 * <i>interpolating polynomials</i> and an ascending array of domain
36 * <i>knot points</i>, determining the intervals over which the spline function
37 * is defined by the constituent polynomials. The polynomials are assumed to
38 * have been computed to match the values of another function at the knot
39 * points. The value consistency constraints are not currently enforced by
40 * <code>PolynomialSplineFunction</code> itself, but are assumed to hold among
41 * the polynomials and knot points passed to the constructor.</p>
42 * <p>
43 * N.B.: The polynomials in the <code>polynomials</code> property must be
44 * centered on the knot points to compute the spline function values.
45 * See below.</p>
46 * <p>
47 * The domain of the polynomial spline function is
48 * <code>[smallest knot, largest knot]</code>. Attempts to evaluate the
49 * function at values outside of this range generate IllegalArgumentExceptions.
50 * </p>
51 * <p>
52 * The value of the polynomial spline function for an argument <code>x</code>
53 * is computed as follows:
54 * <ol>
55 * <li>The knot array is searched to find the segment to which <code>x</code>
56 * belongs. If <code>x</code> is less than the smallest knot point or greater
57 * than the largest one, an <code>IllegalArgumentException</code>
58 * is thrown.</li>
59 * <li> Let <code>j</code> be the index of the largest knot point that is less
60 * than or equal to <code>x</code>. The value returned is
61 * {@code polynomials[j](x - knot[j])}</li></ol>
62 *
63 */
64 public class PolynomialSplineFunction implements UnivariateDifferentiableFunction {
65 /**
66 * Spline segment interval delimiters (knots).
67 * Size is n + 1 for n segments.
68 */
69 private final double[] knots;
70 /**
71 * The polynomial functions that make up the spline. The first element
72 * determines the value of the spline over the first subinterval, the
73 * second over the second, etc. Spline function values are determined by
74 * evaluating these functions at {@code (x - knot[i])} where i is the
75 * knot segment to which x belongs.
76 */
77 private final PolynomialFunction[] polynomials;
78 /**
79 * Number of spline segments. It is equal to the number of polynomials and
80 * to the number of partition points - 1.
81 */
82 private final int n;
83
84
85 /**
86 * Construct a polynomial spline function with the given segment delimiters
87 * and interpolating polynomials.
88 * The constructor copies both arrays and assigns the copies to the knots
89 * and polynomials properties, respectively.
90 *
91 * @param knots Spline segment interval delimiters.
92 * @param polynomials Polynomial functions that make up the spline.
93 * @throws NullArgumentException if either of the input arrays is {@code null}.
94 * @throws NumberIsTooSmallException if knots has length less than 2.
95 * @throws DimensionMismatchException if {@code polynomials.length != knots.length - 1}.
96 * @throws NonMonotonicSequenceException if the {@code knots} array is not strictly increasing.
97 *
98 */
99 public PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials)
100 throws NullArgumentException, NumberIsTooSmallException,
101 DimensionMismatchException, NonMonotonicSequenceException{
102 if (knots == null ||
103 polynomials == null) {
104 throw new NullArgumentException();
105 }
106 if (knots.length < 2) {
107 throw new NumberIsTooSmallException(LocalizedFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION,
108 knots.length, 2, true);
109 }
110 if (knots.length - 1 != polynomials.length) {
111 throw new DimensionMismatchException(polynomials.length, knots.length);
112 }
113 MathArrays.checkOrder(knots);
114
115 this.n = knots.length -1;
116 this.knots = new double[n + 1];
117 System.arraycopy(knots, 0, this.knots, 0, n + 1);
118 this.polynomials = new PolynomialFunction[n];
119 System.arraycopy(polynomials, 0, this.polynomials, 0, n);
120 }
121
122 /**
123 * Compute the value for the function.
124 * See {@link PolynomialSplineFunction} for details on the algorithm for
125 * computing the value of the function.
126 *
127 * @param v Point for which the function value should be computed.
128 * @return the value.
129 * @throws OutOfRangeException if {@code v} is outside of the domain of the
130 * spline function (smaller than the smallest knot point or larger than the
131 * largest knot point).
132 */
133 @Override
134 public double value(double v) {
135 if (v < knots[0] || v > knots[n]) {
136 throw new OutOfRangeException(v, knots[0], knots[n]);
137 }
138 int i = Arrays.binarySearch(knots, v);
139 if (i < 0) {
140 i = -i - 2;
141 }
142 // This will handle the case where v is the last knot value
143 // There are only n-1 polynomials, so if v is the last knot
144 // then we will use the last polynomial to calculate the value.
145 if ( i >= polynomials.length ) {
146 i--;
147 }
148 return polynomials[i].value(v - knots[i]);
149 }
150
151 /**
152 * Get the derivative of the polynomial spline function.
153 *
154 * @return the derivative function.
155 */
156 public PolynomialSplineFunction polynomialSplineDerivative() {
157 PolynomialFunction[] derivativePolynomials = new PolynomialFunction[n];
158 for (int i = 0; i < n; i++) {
159 derivativePolynomials[i] = polynomials[i].polynomialDerivative();
160 }
161 return new PolynomialSplineFunction(knots, derivativePolynomials);
162 }
163
164
165 /** {@inheritDoc}
166 * @since 3.1
167 */
168 @Override
169 public DerivativeStructure value(final DerivativeStructure t) {
170 final double t0 = t.getValue();
171 if (t0 < knots[0] || t0 > knots[n]) {
172 throw new OutOfRangeException(t0, knots[0], knots[n]);
173 }
174 int i = Arrays.binarySearch(knots, t0);
175 if (i < 0) {
176 i = -i - 2;
177 }
178 // This will handle the case where t is the last knot value
179 // There are only n-1 polynomials, so if t is the last knot
180 // then we will use the last polynomial to calculate the value.
181 if ( i >= polynomials.length ) {
182 i--;
183 }
184 return polynomials[i].value(t.subtract(knots[i]));
185 }
186
187 /**
188 * Get the number of spline segments.
189 * It is also the number of polynomials and the number of knot points - 1.
190 *
191 * @return the number of spline segments.
192 */
193 public int getN() {
194 return n;
195 }
196
197 /**
198 * Get a copy of the interpolating polynomials array.
199 * It returns a fresh copy of the array. Changes made to the copy will
200 * not affect the polynomials property.
201 *
202 * @return the interpolating polynomials.
203 */
204 public PolynomialFunction[] getPolynomials() {
205 PolynomialFunction[] p = new PolynomialFunction[n];
206 System.arraycopy(polynomials, 0, p, 0, n);
207 return p;
208 }
209
210 /**
211 * Get an array copy of the knot points.
212 * It returns a fresh copy of the array. Changes made to the copy
213 * will not affect the knots property.
214 *
215 * @return the knot points.
216 */
217 public double[] getKnots() {
218 double[] out = new double[n + 1];
219 System.arraycopy(knots, 0, out, 0, n + 1);
220 return out;
221 }
222
223 /**
224 * Indicates whether a point is within the interpolation range.
225 *
226 * @param x Point.
227 * @return {@code true} if {@code x} is a valid point.
228 */
229 public boolean isValidPoint(double x) {
230 return !(x < knots[0] ||
231 x > knots[n]);
232 }
233 }