1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.math4.legacy.analysis.polynomials; 18 19 import java.util.Arrays; 20 21 import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure; 22 import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction; 23 import org.apache.commons.math4.legacy.exception.DimensionMismatchException; 24 import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException; 25 import org.apache.commons.math4.legacy.exception.NullArgumentException; 26 import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException; 27 import org.apache.commons.math4.legacy.exception.OutOfRangeException; 28 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats; 29 import org.apache.commons.math4.legacy.core.MathArrays; 30 31 /** 32 * Represents a polynomial spline function. 33 * <p> 34 * A <strong>polynomial spline function</strong> consists of a set of 35 * <i>interpolating polynomials</i> and an ascending array of domain 36 * <i>knot points</i>, determining the intervals over which the spline function 37 * is defined by the constituent polynomials. The polynomials are assumed to 38 * have been computed to match the values of another function at the knot 39 * points. The value consistency constraints are not currently enforced by 40 * <code>PolynomialSplineFunction</code> itself, but are assumed to hold among 41 * the polynomials and knot points passed to the constructor.</p> 42 * <p> 43 * N.B.: The polynomials in the <code>polynomials</code> property must be 44 * centered on the knot points to compute the spline function values. 45 * See below.</p> 46 * <p> 47 * The domain of the polynomial spline function is 48 * <code>[smallest knot, largest knot]</code>. Attempts to evaluate the 49 * function at values outside of this range generate IllegalArgumentExceptions. 50 * </p> 51 * <p> 52 * The value of the polynomial spline function for an argument <code>x</code> 53 * is computed as follows: 54 * <ol> 55 * <li>The knot array is searched to find the segment to which <code>x</code> 56 * belongs. If <code>x</code> is less than the smallest knot point or greater 57 * than the largest one, an <code>IllegalArgumentException</code> 58 * is thrown.</li> 59 * <li> Let <code>j</code> be the index of the largest knot point that is less 60 * than or equal to <code>x</code>. The value returned is 61 * {@code polynomials[j](x - knot[j])}</li></ol> 62 * 63 */ 64 public class PolynomialSplineFunction implements UnivariateDifferentiableFunction { 65 /** 66 * Spline segment interval delimiters (knots). 67 * Size is n + 1 for n segments. 68 */ 69 private final double[] knots; 70 /** 71 * The polynomial functions that make up the spline. The first element 72 * determines the value of the spline over the first subinterval, the 73 * second over the second, etc. Spline function values are determined by 74 * evaluating these functions at {@code (x - knot[i])} where i is the 75 * knot segment to which x belongs. 76 */ 77 private final PolynomialFunction[] polynomials; 78 /** 79 * Number of spline segments. It is equal to the number of polynomials and 80 * to the number of partition points - 1. 81 */ 82 private final int n; 83 84 85 /** 86 * Construct a polynomial spline function with the given segment delimiters 87 * and interpolating polynomials. 88 * The constructor copies both arrays and assigns the copies to the knots 89 * and polynomials properties, respectively. 90 * 91 * @param knots Spline segment interval delimiters. 92 * @param polynomials Polynomial functions that make up the spline. 93 * @throws NullArgumentException if either of the input arrays is {@code null}. 94 * @throws NumberIsTooSmallException if knots has length less than 2. 95 * @throws DimensionMismatchException if {@code polynomials.length != knots.length - 1}. 96 * @throws NonMonotonicSequenceException if the {@code knots} array is not strictly increasing. 97 * 98 */ 99 public PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials) 100 throws NullArgumentException, NumberIsTooSmallException, 101 DimensionMismatchException, NonMonotonicSequenceException{ 102 if (knots == null || 103 polynomials == null) { 104 throw new NullArgumentException(); 105 } 106 if (knots.length < 2) { 107 throw new NumberIsTooSmallException(LocalizedFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION, 108 knots.length, 2, true); 109 } 110 if (knots.length - 1 != polynomials.length) { 111 throw new DimensionMismatchException(polynomials.length, knots.length); 112 } 113 MathArrays.checkOrder(knots); 114 115 this.n = knots.length -1; 116 this.knots = new double[n + 1]; 117 System.arraycopy(knots, 0, this.knots, 0, n + 1); 118 this.polynomials = new PolynomialFunction[n]; 119 System.arraycopy(polynomials, 0, this.polynomials, 0, n); 120 } 121 122 /** 123 * Compute the value for the function. 124 * See {@link PolynomialSplineFunction} for details on the algorithm for 125 * computing the value of the function. 126 * 127 * @param v Point for which the function value should be computed. 128 * @return the value. 129 * @throws OutOfRangeException if {@code v} is outside of the domain of the 130 * spline function (smaller than the smallest knot point or larger than the 131 * largest knot point). 132 */ 133 @Override 134 public double value(double v) { 135 if (v < knots[0] || v > knots[n]) { 136 throw new OutOfRangeException(v, knots[0], knots[n]); 137 } 138 int i = Arrays.binarySearch(knots, v); 139 if (i < 0) { 140 i = -i - 2; 141 } 142 // This will handle the case where v is the last knot value 143 // There are only n-1 polynomials, so if v is the last knot 144 // then we will use the last polynomial to calculate the value. 145 if ( i >= polynomials.length ) { 146 i--; 147 } 148 return polynomials[i].value(v - knots[i]); 149 } 150 151 /** 152 * Get the derivative of the polynomial spline function. 153 * 154 * @return the derivative function. 155 */ 156 public PolynomialSplineFunction polynomialSplineDerivative() { 157 PolynomialFunction[] derivativePolynomials = new PolynomialFunction[n]; 158 for (int i = 0; i < n; i++) { 159 derivativePolynomials[i] = polynomials[i].polynomialDerivative(); 160 } 161 return new PolynomialSplineFunction(knots, derivativePolynomials); 162 } 163 164 165 /** {@inheritDoc} 166 * @since 3.1 167 */ 168 @Override 169 public DerivativeStructure value(final DerivativeStructure t) { 170 final double t0 = t.getValue(); 171 if (t0 < knots[0] || t0 > knots[n]) { 172 throw new OutOfRangeException(t0, knots[0], knots[n]); 173 } 174 int i = Arrays.binarySearch(knots, t0); 175 if (i < 0) { 176 i = -i - 2; 177 } 178 // This will handle the case where t is the last knot value 179 // There are only n-1 polynomials, so if t is the last knot 180 // then we will use the last polynomial to calculate the value. 181 if ( i >= polynomials.length ) { 182 i--; 183 } 184 return polynomials[i].value(t.subtract(knots[i])); 185 } 186 187 /** 188 * Get the number of spline segments. 189 * It is also the number of polynomials and the number of knot points - 1. 190 * 191 * @return the number of spline segments. 192 */ 193 public int getN() { 194 return n; 195 } 196 197 /** 198 * Get a copy of the interpolating polynomials array. 199 * It returns a fresh copy of the array. Changes made to the copy will 200 * not affect the polynomials property. 201 * 202 * @return the interpolating polynomials. 203 */ 204 public PolynomialFunction[] getPolynomials() { 205 PolynomialFunction[] p = new PolynomialFunction[n]; 206 System.arraycopy(polynomials, 0, p, 0, n); 207 return p; 208 } 209 210 /** 211 * Get an array copy of the knot points. 212 * It returns a fresh copy of the array. Changes made to the copy 213 * will not affect the knots property. 214 * 215 * @return the knot points. 216 */ 217 public double[] getKnots() { 218 double[] out = new double[n + 1]; 219 System.arraycopy(knots, 0, out, 0, n + 1); 220 return out; 221 } 222 223 /** 224 * Indicates whether a point is within the interpolation range. 225 * 226 * @param x Point. 227 * @return {@code true} if {@code x} is a valid point. 228 */ 229 public boolean isValidPoint(double x) { 230 return !(x < knots[0] || 231 x > knots[n]); 232 } 233 }