1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.math4.legacy.distribution; 18 19 import org.apache.commons.statistics.distribution.ContinuousDistribution; 20 import org.apache.commons.math4.legacy.analysis.UnivariateFunction; 21 import org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils; 22 import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException; 23 import org.apache.commons.math4.legacy.exception.OutOfRangeException; 24 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats; 25 import org.apache.commons.rng.UniformRandomProvider; 26 import org.apache.commons.rng.sampling.distribution.InverseTransformContinuousSampler; 27 import org.apache.commons.math4.core.jdkmath.JdkMath; 28 29 /** 30 * Base class for probability distributions on the reals. 31 * Default implementations are provided for some of the methods 32 * that do not vary from distribution to distribution. 33 * 34 * <p> 35 * This base class provides a default factory method for creating 36 * a {@link org.apache.commons.statistics.distribution.ContinuousDistribution.Sampler 37 * sampler instance} that uses the 38 * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> 39 * inversion method</a> for generating random samples that follow the 40 * distribution. 41 * </p> 42 * 43 * @since 3.0 44 */ 45 public abstract class AbstractRealDistribution 46 implements ContinuousDistribution { 47 /** Default absolute accuracy for inverse cumulative computation. */ 48 public static final double SOLVER_DEFAULT_ABSOLUTE_ACCURACY = 1e-6; 49 50 /** 51 * For a random variable {@code X} whose values are distributed according 52 * to this distribution, this method returns {@code P(x0 < X <= x1)}. 53 * 54 * @param x0 Lower bound (excluded). 55 * @param x1 Upper bound (included). 56 * @return the probability that a random variable with this distribution 57 * takes a value between {@code x0} and {@code x1}, excluding the lower 58 * and including the upper endpoint. 59 * @throws NumberIsTooLargeException if {@code x0 > x1}. 60 * 61 * The default implementation uses the identity 62 * {@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)} 63 * 64 * @since 3.1 65 */ 66 @Override 67 public double probability(double x0, 68 double x1) { 69 if (x0 > x1) { 70 throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, 71 x0, x1, true); 72 } 73 return cumulativeProbability(x1) - cumulativeProbability(x0); 74 } 75 76 /** 77 * {@inheritDoc} 78 * 79 * The default implementation returns 80 * <ul> 81 * <li>{@link #getSupportLowerBound()} for {@code p = 0},</li> 82 * <li>{@link #getSupportUpperBound()} for {@code p = 1}.</li> 83 * </ul> 84 */ 85 @Override 86 public double inverseCumulativeProbability(final double p) throws OutOfRangeException { 87 /* 88 * IMPLEMENTATION NOTES 89 * -------------------- 90 * Where applicable, use is made of the one-sided Chebyshev inequality 91 * to bracket the root. This inequality states that 92 * P(X - mu >= k * sig) <= 1 / (1 + k^2), 93 * mu: mean, sig: standard deviation. Equivalently 94 * 1 - P(X < mu + k * sig) <= 1 / (1 + k^2), 95 * F(mu + k * sig) >= k^2 / (1 + k^2). 96 * 97 * For k = sqrt(p / (1 - p)), we find 98 * F(mu + k * sig) >= p, 99 * and (mu + k * sig) is an upper-bound for the root. 100 * 101 * Then, introducing Y = -X, mean(Y) = -mu, sd(Y) = sig, and 102 * P(Y >= -mu + k * sig) <= 1 / (1 + k^2), 103 * P(-X >= -mu + k * sig) <= 1 / (1 + k^2), 104 * P(X <= mu - k * sig) <= 1 / (1 + k^2), 105 * F(mu - k * sig) <= 1 / (1 + k^2). 106 * 107 * For k = sqrt((1 - p) / p), we find 108 * F(mu - k * sig) <= p, 109 * and (mu - k * sig) is a lower-bound for the root. 110 * 111 * In cases where the Chebyshev inequality does not apply, geometric 112 * progressions 1, 2, 4, ... and -1, -2, -4, ... are used to bracket 113 * the root. 114 */ 115 if (p < 0.0 || p > 1.0) { 116 throw new OutOfRangeException(p, 0, 1); 117 } 118 119 double lowerBound = getSupportLowerBound(); 120 if (p == 0.0) { 121 return lowerBound; 122 } 123 124 double upperBound = getSupportUpperBound(); 125 if (p == 1.0) { 126 return upperBound; 127 } 128 129 final double mu = getMean(); 130 final double sig = JdkMath.sqrt(getVariance()); 131 final boolean chebyshevApplies; 132 chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) || 133 Double.isInfinite(sig) || Double.isNaN(sig)); 134 135 if (lowerBound == Double.NEGATIVE_INFINITY) { 136 if (chebyshevApplies) { 137 lowerBound = mu - sig * JdkMath.sqrt((1. - p) / p); 138 } else { 139 lowerBound = -1.0; 140 while (cumulativeProbability(lowerBound) >= p) { 141 lowerBound *= 2.0; 142 } 143 } 144 } 145 146 if (upperBound == Double.POSITIVE_INFINITY) { 147 if (chebyshevApplies) { 148 upperBound = mu + sig * JdkMath.sqrt(p / (1. - p)); 149 } else { 150 upperBound = 1.0; 151 while (cumulativeProbability(upperBound) < p) { 152 upperBound *= 2.0; 153 } 154 } 155 } 156 157 final UnivariateFunction toSolve = new UnivariateFunction() { 158 /** {@inheritDoc} */ 159 @Override 160 public double value(final double x) { 161 return cumulativeProbability(x) - p; 162 } 163 }; 164 165 return UnivariateSolverUtils.solve(toSolve, 166 lowerBound, 167 upperBound, 168 getSolverAbsoluteAccuracy()); 169 } 170 171 /** 172 * Returns the solver absolute accuracy for inverse cumulative computation. 173 * You can override this method in order to use a Brent solver with an 174 * absolute accuracy different from the default. 175 * 176 * @return the maximum absolute error in inverse cumulative probability estimates 177 */ 178 protected double getSolverAbsoluteAccuracy() { 179 return SOLVER_DEFAULT_ABSOLUTE_ACCURACY; 180 } 181 182 /** 183 * {@inheritDoc} 184 * <p> 185 * The default implementation simply computes the logarithm of {@code density(x)}. 186 */ 187 @Override 188 public double logDensity(double x) { 189 return JdkMath.log(density(x)); 190 } 191 192 /** 193 * Utility function for allocating an array and filling it with {@code n} 194 * samples generated by the given {@code sampler}. 195 * 196 * @param n Number of samples. 197 * @param sampler Sampler. 198 * @return an array of size {@code n}. 199 */ 200 public static double[] sample(int n, 201 ContinuousDistribution.Sampler sampler) { 202 final double[] samples = new double[n]; 203 for (int i = 0; i < n; i++) { 204 samples[i] = sampler.sample(); 205 } 206 return samples; 207 } 208 209 /**{@inheritDoc} */ 210 @Override 211 public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) { 212 // Inversion method distribution sampler. 213 return InverseTransformContinuousSampler.of(rng, this::inverseCumulativeProbability)::sample; 214 } 215 }