1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 package org.apache.commons.math4.legacy.linear;
19
20 import java.util.Arrays;
21
22 import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
23 import org.apache.commons.math4.core.jdkmath.JdkMath;
24 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
25
26
27 /**
28 * Calculates the QR-decomposition of a matrix.
29 * <p>The QR-decomposition of a matrix A consists of two matrices Q and R
30 * that satisfy: A = QR, Q is orthogonal (Q<sup>T</sup>Q = I), and R is
31 * upper triangular. If A is m×n, Q is m×m and R m×n.</p>
32 * <p>This class compute the decomposition using Householder reflectors.</p>
33 * <p>For efficiency purposes, the decomposition in packed form is transposed.
34 * This allows inner loop to iterate inside rows, which is much more cache-efficient
35 * in Java.</p>
36 * <p>This class is based on the class with similar name from the
37 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
38 * following changes:</p>
39 * <ul>
40 * <li>a {@link #getQT() getQT} method has been added,</li>
41 * <li>the {@code solve} and {@code isFullRank} methods have been replaced
42 * by a {@link #getSolver() getSolver} method and the equivalent methods
43 * provided by the returned {@link DecompositionSolver}.</li>
44 * </ul>
45 *
46 * @see <a href="http://mathworld.wolfram.com/QRDecomposition.html">MathWorld</a>
47 * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition">Wikipedia</a>
48 *
49 * @since 1.2 (changed to concrete class in 3.0)
50 */
51 public class QRDecomposition {
52 /**
53 * A packed TRANSPOSED representation of the QR decomposition.
54 * <p>The elements BELOW the diagonal are the elements of the UPPER triangular
55 * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
56 * from which an explicit form of Q can be recomputed if desired.</p>
57 */
58 private double[][] qrt;
59 /** The diagonal elements of R. */
60 private double[] rDiag;
61 /** Cached value of Q. */
62 private RealMatrix cachedQ;
63 /** Cached value of QT. */
64 private RealMatrix cachedQT;
65 /** Cached value of R. */
66 private RealMatrix cachedR;
67 /** Cached value of H. */
68 private RealMatrix cachedH;
69 /** Singularity threshold. */
70 private final double threshold;
71
72 /**
73 * Calculates the QR-decomposition of the given matrix.
74 * The singularity threshold defaults to zero.
75 *
76 * @param matrix The matrix to decompose.
77 *
78 * @see #QRDecomposition(RealMatrix,double)
79 */
80 public QRDecomposition(RealMatrix matrix) {
81 this(matrix, 0d);
82 }
83
84 /**
85 * Calculates the QR-decomposition of the given matrix.
86 *
87 * @param matrix The matrix to decompose.
88 * @param threshold Singularity threshold.
89 * The matrix will be considered singular if the absolute value of
90 * any of the diagonal elements of the "R" matrix is smaller than
91 * the threshold.
92 */
93 public QRDecomposition(RealMatrix matrix,
94 double threshold) {
95 this.threshold = threshold;
96
97 final int m = matrix.getRowDimension();
98 final int n = matrix.getColumnDimension();
99 qrt = matrix.transpose().getData();
100 rDiag = new double[JdkMath.min(m, n)];
101 cachedQ = null;
102 cachedQT = null;
103 cachedR = null;
104 cachedH = null;
105
106 decompose(qrt);
107 }
108
109 /** Decompose matrix.
110 * @param matrix transposed matrix
111 * @since 3.2
112 */
113 protected void decompose(double[][] matrix) {
114 for (int minor = 0; minor < JdkMath.min(matrix.length, matrix[0].length); minor++) {
115 performHouseholderReflection(minor, matrix);
116 }
117 }
118
119 /** Perform Householder reflection for a minor A(minor, minor) of A.
120 * @param minor minor index
121 * @param matrix transposed matrix
122 * @since 3.2
123 */
124 protected void performHouseholderReflection(int minor, double[][] matrix) {
125
126 final double[] qrtMinor = matrix[minor];
127
128 /*
129 * Let x be the first column of the minor, and a^2 = |x|^2.
130 * x will be in the positions qr[minor][minor] through qr[m][minor].
131 * The first column of the transformed minor will be (a,0,0,..)'
132 * The sign of a is chosen to be opposite to the sign of the first
133 * component of x. Let's find a:
134 */
135 double xNormSqr = 0;
136 for (int row = minor; row < qrtMinor.length; row++) {
137 final double c = qrtMinor[row];
138 xNormSqr += c * c;
139 }
140 final double a = (qrtMinor[minor] > 0) ? -JdkMath.sqrt(xNormSqr) : JdkMath.sqrt(xNormSqr);
141 rDiag[minor] = a;
142
143 if (a != 0.0) {
144
145 /*
146 * Calculate the normalized reflection vector v and transform
147 * the first column. We know the norm of v beforehand: v = x-ae
148 * so |v|^2 = <x-ae,x-ae> = <x,x>-2a<x,e>+a^2<e,e> =
149 * a^2+a^2-2a<x,e> = 2a*(a - <x,e>).
150 * Here <x, e> is now qr[minor][minor].
151 * v = x-ae is stored in the column at qr:
152 */
153 qrtMinor[minor] -= a; // now |v|^2 = -2a*(qr[minor][minor])
154
155 /*
156 * Transform the rest of the columns of the minor:
157 * They will be transformed by the matrix H = I-2vv'/|v|^2.
158 * If x is a column vector of the minor, then
159 * Hx = (I-2vv'/|v|^2)x = x-2vv'x/|v|^2 = x - 2<x,v>/|v|^2 v.
160 * Therefore the transformation is easily calculated by
161 * subtracting the column vector (2<x,v>/|v|^2)v from x.
162 *
163 * Let 2<x,v>/|v|^2 = alpha. From above we have
164 * |v|^2 = -2a*(qr[minor][minor]), so
165 * alpha = -<x,v>/(a*qr[minor][minor])
166 */
167 for (int col = minor+1; col < matrix.length; col++) {
168 final double[] qrtCol = matrix[col];
169 double alpha = 0;
170 for (int row = minor; row < qrtCol.length; row++) {
171 alpha -= qrtCol[row] * qrtMinor[row];
172 }
173 alpha /= a * qrtMinor[minor];
174
175 // Subtract the column vector alpha*v from x.
176 for (int row = minor; row < qrtCol.length; row++) {
177 qrtCol[row] -= alpha * qrtMinor[row];
178 }
179 }
180 }
181 }
182
183
184 /**
185 * Returns the matrix R of the decomposition.
186 * <p>R is an upper-triangular matrix</p>
187 * @return the R matrix
188 */
189 public RealMatrix getR() {
190
191 if (cachedR == null) {
192
193 // R is supposed to be m x n
194 final int n = qrt.length;
195 final int m = qrt[0].length;
196 double[][] ra = new double[m][n];
197 // copy the diagonal from rDiag and the upper triangle of qr
198 for (int row = JdkMath.min(m, n) - 1; row >= 0; row--) {
199 ra[row][row] = rDiag[row];
200 for (int col = row + 1; col < n; col++) {
201 ra[row][col] = qrt[col][row];
202 }
203 }
204 cachedR = MatrixUtils.createRealMatrix(ra);
205 }
206
207 // return the cached matrix
208 return cachedR;
209 }
210
211 /**
212 * Returns the matrix Q of the decomposition.
213 * <p>Q is an orthogonal matrix</p>
214 * @return the Q matrix
215 */
216 public RealMatrix getQ() {
217 if (cachedQ == null) {
218 cachedQ = getQT().transpose();
219 }
220 return cachedQ;
221 }
222
223 /**
224 * Returns the transpose of the matrix Q of the decomposition.
225 * <p>Q is an orthogonal matrix</p>
226 * @return the transpose of the Q matrix, Q<sup>T</sup>
227 */
228 public RealMatrix getQT() {
229 if (cachedQT == null) {
230
231 // QT is supposed to be m x m
232 final int n = qrt.length;
233 final int m = qrt[0].length;
234 double[][] qta = new double[m][m];
235
236 /*
237 * Q = Q1 Q2 ... Q_m, so Q is formed by first constructing Q_m and then
238 * applying the Householder transformations Q_(m-1),Q_(m-2),...,Q1 in
239 * succession to the result
240 */
241 for (int minor = m - 1; minor >= JdkMath.min(m, n); minor--) {
242 qta[minor][minor] = 1.0d;
243 }
244
245 for (int minor = JdkMath.min(m, n)-1; minor >= 0; minor--){
246 final double[] qrtMinor = qrt[minor];
247 qta[minor][minor] = 1.0d;
248 if (qrtMinor[minor] != 0.0) {
249 for (int col = minor; col < m; col++) {
250 double alpha = 0;
251 for (int row = minor; row < m; row++) {
252 alpha -= qta[col][row] * qrtMinor[row];
253 }
254 alpha /= rDiag[minor] * qrtMinor[minor];
255
256 for (int row = minor; row < m; row++) {
257 qta[col][row] += -alpha * qrtMinor[row];
258 }
259 }
260 }
261 }
262 cachedQT = MatrixUtils.createRealMatrix(qta);
263 }
264
265 // return the cached matrix
266 return cachedQT;
267 }
268
269 /**
270 * Returns the Householder reflector vectors.
271 * <p>H is a lower trapezoidal matrix whose columns represent
272 * each successive Householder reflector vector. This matrix is used
273 * to compute Q.</p>
274 * @return a matrix containing the Householder reflector vectors
275 */
276 public RealMatrix getH() {
277 if (cachedH == null) {
278
279 final int n = qrt.length;
280 final int m = qrt[0].length;
281 double[][] ha = new double[m][n];
282 for (int i = 0; i < m; ++i) {
283 for (int j = 0; j < JdkMath.min(i + 1, n); ++j) {
284 ha[i][j] = qrt[j][i] / -rDiag[j];
285 }
286 }
287 cachedH = MatrixUtils.createRealMatrix(ha);
288 }
289
290 // return the cached matrix
291 return cachedH;
292 }
293
294 /**
295 * Get a solver for finding the A × X = B solution in least square sense.
296 * <p>
297 * Least Square sense means a solver can be computed for an overdetermined system,
298 * (i.e. a system with more equations than unknowns, which corresponds to a tall A
299 * matrix with more rows than columns). In any case, if the matrix is singular
300 * within the tolerance set at {@link QRDecomposition#QRDecomposition(RealMatrix,
301 * double) construction}, an error will be triggered when
302 * the {@link DecompositionSolver#solve(RealVector) solve} method will be called.
303 * </p>
304 * @return a solver
305 */
306 public DecompositionSolver getSolver() {
307 return new Solver(qrt, rDiag, threshold);
308 }
309
310 /** Specialized solver. */
311 private static final class Solver implements DecompositionSolver {
312 /**
313 * A packed TRANSPOSED representation of the QR decomposition.
314 * <p>The elements BELOW the diagonal are the elements of the UPPER triangular
315 * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors
316 * from which an explicit form of Q can be recomputed if desired.</p>
317 */
318 private final double[][] qrt;
319 /** The diagonal elements of R. */
320 private final double[] rDiag;
321 /** Singularity threshold. */
322 private final double threshold;
323
324 /**
325 * Build a solver from decomposed matrix.
326 *
327 * @param qrt Packed TRANSPOSED representation of the QR decomposition.
328 * @param rDiag Diagonal elements of R.
329 * @param threshold Singularity threshold.
330 */
331 private Solver(final double[][] qrt,
332 final double[] rDiag,
333 final double threshold) {
334 this.qrt = qrt;
335 this.rDiag = rDiag;
336 this.threshold = threshold;
337 }
338
339 /** {@inheritDoc} */
340 @Override
341 public boolean isNonSingular() {
342 return !checkSingular(rDiag, threshold, false);
343 }
344
345 /** {@inheritDoc} */
346 @Override
347 public RealVector solve(RealVector b) {
348 final int n = qrt.length;
349 final int m = qrt[0].length;
350 if (b.getDimension() != m) {
351 throw new DimensionMismatchException(b.getDimension(), m);
352 }
353 checkSingular(rDiag, threshold, true);
354
355 final double[] x = new double[n];
356 final double[] y = b.toArray();
357
358 // apply Householder transforms to solve Q.y = b
359 for (int minor = 0; minor < JdkMath.min(m, n); minor++) {
360
361 final double[] qrtMinor = qrt[minor];
362 double dotProduct = 0;
363 for (int row = minor; row < m; row++) {
364 dotProduct += y[row] * qrtMinor[row];
365 }
366 dotProduct /= rDiag[minor] * qrtMinor[minor];
367
368 for (int row = minor; row < m; row++) {
369 y[row] += dotProduct * qrtMinor[row];
370 }
371 }
372
373 // solve triangular system R.x = y
374 for (int row = rDiag.length - 1; row >= 0; --row) {
375 y[row] /= rDiag[row];
376 final double yRow = y[row];
377 final double[] qrtRow = qrt[row];
378 x[row] = yRow;
379 for (int i = 0; i < row; i++) {
380 y[i] -= yRow * qrtRow[i];
381 }
382 }
383
384 return new ArrayRealVector(x, false);
385 }
386
387 /** {@inheritDoc} */
388 @Override
389 public RealMatrix solve(RealMatrix b) {
390 final int n = qrt.length;
391 final int m = qrt[0].length;
392 if (b.getRowDimension() != m) {
393 throw new DimensionMismatchException(b.getRowDimension(), m);
394 }
395 checkSingular(rDiag, threshold, true);
396
397 final int columns = b.getColumnDimension();
398 final int blockSize = BlockRealMatrix.BLOCK_SIZE;
399 final int cBlocks = (columns + blockSize - 1) / blockSize;
400 final double[][] xBlocks = BlockRealMatrix.createBlocksLayout(n, columns);
401 final double[][] y = new double[b.getRowDimension()][blockSize];
402 final double[] alpha = new double[blockSize];
403
404 for (int kBlock = 0; kBlock < cBlocks; ++kBlock) {
405 final int kStart = kBlock * blockSize;
406 final int kEnd = JdkMath.min(kStart + blockSize, columns);
407 final int kWidth = kEnd - kStart;
408
409 // get the right hand side vector
410 b.copySubMatrix(0, m - 1, kStart, kEnd - 1, y);
411
412 // apply Householder transforms to solve Q.y = b
413 for (int minor = 0; minor < JdkMath.min(m, n); minor++) {
414 final double[] qrtMinor = qrt[minor];
415 final double factor = 1.0 / (rDiag[minor] * qrtMinor[minor]);
416
417 Arrays.fill(alpha, 0, kWidth, 0.0);
418 for (int row = minor; row < m; ++row) {
419 final double d = qrtMinor[row];
420 final double[] yRow = y[row];
421 for (int k = 0; k < kWidth; ++k) {
422 alpha[k] += d * yRow[k];
423 }
424 }
425 for (int k = 0; k < kWidth; ++k) {
426 alpha[k] *= factor;
427 }
428
429 for (int row = minor; row < m; ++row) {
430 final double d = qrtMinor[row];
431 final double[] yRow = y[row];
432 for (int k = 0; k < kWidth; ++k) {
433 yRow[k] += alpha[k] * d;
434 }
435 }
436 }
437
438 // solve triangular system R.x = y
439 for (int j = rDiag.length - 1; j >= 0; --j) {
440 final int jBlock = j / blockSize;
441 final int jStart = jBlock * blockSize;
442 final double factor = 1.0 / rDiag[j];
443 final double[] yJ = y[j];
444 final double[] xBlock = xBlocks[jBlock * cBlocks + kBlock];
445 int index = (j - jStart) * kWidth;
446 for (int k = 0; k < kWidth; ++k) {
447 yJ[k] *= factor;
448 xBlock[index++] = yJ[k];
449 }
450
451 final double[] qrtJ = qrt[j];
452 for (int i = 0; i < j; ++i) {
453 final double rIJ = qrtJ[i];
454 final double[] yI = y[i];
455 for (int k = 0; k < kWidth; ++k) {
456 yI[k] -= yJ[k] * rIJ;
457 }
458 }
459 }
460 }
461
462 return new BlockRealMatrix(n, columns, xBlocks, false);
463 }
464
465 /**
466 * {@inheritDoc}
467 * @throws SingularMatrixException if the decomposed matrix is singular.
468 */
469 @Override
470 public RealMatrix getInverse() {
471 return solve(MatrixUtils.createRealIdentityMatrix(qrt[0].length));
472 }
473
474 /**
475 * Check singularity.
476 *
477 * @param diag Diagonal elements of the R matrix.
478 * @param min Singularity threshold.
479 * @param raise Whether to raise a {@link SingularMatrixException}
480 * if any element of the diagonal fails the check.
481 * @return {@code true} if any element of the diagonal is smaller
482 * or equal to {@code min}.
483 * @throws SingularMatrixException if the matrix is singular and
484 * {@code raise} is {@code true}.
485 */
486 private static boolean checkSingular(double[] diag,
487 double min,
488 boolean raise) {
489 final int len = diag.length;
490 for (int i = 0; i < len; i++) {
491 final double d = diag[i];
492 if (JdkMath.abs(d) <= min) {
493 if (raise) {
494 final SingularMatrixException e = new SingularMatrixException();
495 e.getContext().addMessage(LocalizedFormats.NUMBER_TOO_SMALL, d, min);
496 e.getContext().addMessage(LocalizedFormats.INDEX, i);
497 throw e;
498 } else {
499 return true;
500 }
501 }
502 }
503 return false;
504 }
505 }
506 }