1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 package org.apache.commons.math4.legacy.linear; 19 20 import java.util.Arrays; 21 22 import org.apache.commons.math4.core.jdkmath.JdkMath; 23 24 25 /** 26 * Class transforming a symmetrical matrix to tridiagonal shape. 27 * <p>A symmetrical m × m matrix A can be written as the product of three matrices: 28 * A = Q × T × Q<sup>T</sup> with Q an orthogonal matrix and T a symmetrical 29 * tridiagonal matrix. Both Q and T are m × m matrices.</p> 30 * <p>This implementation only uses the upper part of the matrix, the part below the 31 * diagonal is not accessed at all.</p> 32 * <p>Transformation to tridiagonal shape is often not a goal by itself, but it is 33 * an intermediate step in more general decomposition algorithms like {@link 34 * EigenDecomposition eigen decomposition}. This class is therefore intended for internal 35 * use by the library and is not public. As a consequence of this explicitly limited scope, 36 * many methods directly returns references to internal arrays, not copies.</p> 37 * @since 2.0 38 */ 39 class TriDiagonalTransformer { 40 /** Householder vectors. */ 41 private final double[][] householderVectors; 42 /** Main diagonal. */ 43 private final double[] main; 44 /** Secondary diagonal. */ 45 private final double[] secondary; 46 /** Cached value of Q. */ 47 private RealMatrix cachedQ; 48 /** Cached value of Qt. */ 49 private RealMatrix cachedQt; 50 /** Cached value of T. */ 51 private RealMatrix cachedT; 52 53 /** 54 * Build the transformation to tridiagonal shape of a symmetrical matrix. 55 * <p>The specified matrix is assumed to be symmetrical without any check. 56 * Only the upper triangular part of the matrix is used.</p> 57 * 58 * @param matrix Symmetrical matrix to transform. 59 * @throws NonSquareMatrixException if the matrix is not square. 60 */ 61 TriDiagonalTransformer(RealMatrix matrix) { 62 if (!matrix.isSquare()) { 63 throw new NonSquareMatrixException(matrix.getRowDimension(), 64 matrix.getColumnDimension()); 65 } 66 67 final int m = matrix.getRowDimension(); 68 householderVectors = matrix.getData(); 69 main = new double[m]; 70 secondary = new double[m - 1]; 71 cachedQ = null; 72 cachedQt = null; 73 cachedT = null; 74 75 // transform matrix 76 transform(); 77 } 78 79 /** 80 * Returns the matrix Q of the transform. 81 * <p>Q is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 82 * @return the Q matrix 83 */ 84 public RealMatrix getQ() { 85 if (cachedQ == null) { 86 cachedQ = getQT().transpose(); 87 } 88 return cachedQ; 89 } 90 91 /** 92 * Returns the transpose of the matrix Q of the transform. 93 * <p>Q is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 94 * @return the Q matrix 95 */ 96 public RealMatrix getQT() { 97 if (cachedQt == null) { 98 final int m = householderVectors.length; 99 double[][] qta = new double[m][m]; 100 101 // build up first part of the matrix by applying Householder transforms 102 for (int k = m - 1; k >= 1; --k) { 103 final double[] hK = householderVectors[k - 1]; 104 qta[k][k] = 1; 105 if (hK[k] != 0.0) { 106 final double inv = 1.0 / (secondary[k - 1] * hK[k]); 107 double beta = 1.0 / secondary[k - 1]; 108 qta[k][k] = 1 + beta * hK[k]; 109 for (int i = k + 1; i < m; ++i) { 110 qta[k][i] = beta * hK[i]; 111 } 112 for (int j = k + 1; j < m; ++j) { 113 beta = 0; 114 for (int i = k + 1; i < m; ++i) { 115 beta += qta[j][i] * hK[i]; 116 } 117 beta *= inv; 118 qta[j][k] = beta * hK[k]; 119 for (int i = k + 1; i < m; ++i) { 120 qta[j][i] += beta * hK[i]; 121 } 122 } 123 } 124 } 125 qta[0][0] = 1; 126 cachedQt = MatrixUtils.createRealMatrix(qta); 127 } 128 129 // return the cached matrix 130 return cachedQt; 131 } 132 133 /** 134 * Returns the tridiagonal matrix T of the transform. 135 * @return the T matrix 136 */ 137 public RealMatrix getT() { 138 if (cachedT == null) { 139 final int m = main.length; 140 double[][] ta = new double[m][m]; 141 for (int i = 0; i < m; ++i) { 142 ta[i][i] = main[i]; 143 if (i > 0) { 144 ta[i][i - 1] = secondary[i - 1]; 145 } 146 if (i < main.length - 1) { 147 ta[i][i + 1] = secondary[i]; 148 } 149 } 150 cachedT = MatrixUtils.createRealMatrix(ta); 151 } 152 153 // return the cached matrix 154 return cachedT; 155 } 156 157 /** 158 * Get the Householder vectors of the transform. 159 * <p>Note that since this class is only intended for internal use, 160 * it returns directly a reference to its internal arrays, not a copy.</p> 161 * @return the main diagonal elements of the B matrix 162 */ 163 double[][] getHouseholderVectorsRef() { 164 return householderVectors; 165 } 166 167 /** 168 * Get the main diagonal elements of the matrix T of the transform. 169 * <p>Note that since this class is only intended for internal use, 170 * it returns directly a reference to its internal arrays, not a copy.</p> 171 * @return the main diagonal elements of the T matrix 172 */ 173 double[] getMainDiagonalRef() { 174 return main; 175 } 176 177 /** 178 * Get the secondary diagonal elements of the matrix T of the transform. 179 * <p>Note that since this class is only intended for internal use, 180 * it returns directly a reference to its internal arrays, not a copy.</p> 181 * @return the secondary diagonal elements of the T matrix 182 */ 183 double[] getSecondaryDiagonalRef() { 184 return secondary; 185 } 186 187 /** 188 * Transform original matrix to tridiagonal form. 189 * <p>Transformation is done using Householder transforms.</p> 190 */ 191 private void transform() { 192 final int m = householderVectors.length; 193 final double[] z = new double[m]; 194 for (int k = 0; k < m - 1; k++) { 195 196 //zero-out a row and a column simultaneously 197 final double[] hK = householderVectors[k]; 198 main[k] = hK[k]; 199 double xNormSqr = 0; 200 for (int j = k + 1; j < m; ++j) { 201 final double c = hK[j]; 202 xNormSqr += c * c; 203 } 204 final double a = (hK[k + 1] > 0) ? -JdkMath.sqrt(xNormSqr) : JdkMath.sqrt(xNormSqr); 205 secondary[k] = a; 206 if (a != 0.0) { 207 // apply Householder transform from left and right simultaneously 208 209 hK[k + 1] -= a; 210 final double beta = -1 / (a * hK[k + 1]); 211 212 // compute a = beta A v, where v is the Householder vector 213 // this loop is written in such a way 214 // 1) only the upper triangular part of the matrix is accessed 215 // 2) access is cache-friendly for a matrix stored in rows 216 Arrays.fill(z, k + 1, m, 0); 217 for (int i = k + 1; i < m; ++i) { 218 final double[] hI = householderVectors[i]; 219 final double hKI = hK[i]; 220 double zI = hI[i] * hKI; 221 for (int j = i + 1; j < m; ++j) { 222 final double hIJ = hI[j]; 223 zI += hIJ * hK[j]; 224 z[j] += hIJ * hKI; 225 } 226 z[i] = beta * (z[i] + zI); 227 } 228 229 // compute gamma = beta vT z / 2 230 double gamma = 0; 231 for (int i = k + 1; i < m; ++i) { 232 gamma += z[i] * hK[i]; 233 } 234 gamma *= beta / 2; 235 236 // compute z = z - gamma v 237 for (int i = k + 1; i < m; ++i) { 238 z[i] -= gamma * hK[i]; 239 } 240 241 // update matrix: A = A - v zT - z vT 242 // only the upper triangular part of the matrix is updated 243 for (int i = k + 1; i < m; ++i) { 244 final double[] hI = householderVectors[i]; 245 for (int j = i; j < m; ++j) { 246 hI[j] -= hK[i] * z[j] + z[i] * hK[j]; 247 } 248 } 249 } 250 } 251 main[m - 1] = householderVectors[m - 1][m - 1]; 252 } 253 }