1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 package org.apache.commons.math4.legacy.ode;
19
20 import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
21 import org.apache.commons.math4.legacy.exception.MathIllegalStateException;
22 import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
23 import org.apache.commons.math4.legacy.exception.NoBracketingException;
24 import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
25 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
26 import org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix;
27 import org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator;
28 import org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853Integrator;
29 import org.apache.commons.math4.legacy.ode.sampling.StepHandler;
30 import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator;
31 import org.apache.commons.math4.core.jdkmath.JdkMath;
32
33 /**
34 * This class is the base class for multistep integrators for Ordinary
35 * Differential Equations.
36 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
37 * <div style="white-space: pre"><code>
38 * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
39 * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
40 * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
41 * ...
42 * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
43 * </code></div>
44 * <p>Rather than storing several previous steps separately, this implementation uses
45 * the Nordsieck vector with higher degrees scaled derivatives all taken at the same
46 * step (y<sub>n</sub>, s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
47 * <div style="white-space: pre"><code>
48 * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
49 * </code></div>
50 * (we omit the k index in the notation for clarity)
51 * <p>
52 * Multistep integrators with Nordsieck representation are highly sensitive to
53 * large step changes because when the step is multiplied by factor a, the
54 * k<sup>th</sup> component of the Nordsieck vector is multiplied by a<sup>k</sup>
55 * and the last components are the least accurate ones. The default max growth
56 * factor is therefore set to a quite low value: 2<sup>1/order</sup>.
57 * </p>
58 *
59 * @see org.apache.commons.math4.legacy.ode.nonstiff.AdamsBashforthIntegrator
60 * @see org.apache.commons.math4.legacy.ode.nonstiff.AdamsMoultonIntegrator
61 * @since 2.0
62 */
63 public abstract class MultistepIntegrator extends AdaptiveStepsizeIntegrator {
64
65 /** First scaled derivative (h y'). */
66 protected double[] scaled;
67
68 /** Nordsieck matrix of the higher scaled derivatives.
69 * <p>(h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ..., h<sup>k</sup>/k! y<sup>(k)</sup>)</p>
70 */
71 protected Array2DRowRealMatrix nordsieck;
72
73 /** Starter integrator. */
74 private FirstOrderIntegrator starter;
75
76 /** Number of steps of the multistep method (excluding the one being computed). */
77 private final int nSteps;
78
79 /** Stepsize control exponent. */
80 private double exp;
81
82 /** Safety factor for stepsize control. */
83 private double safety;
84
85 /** Minimal reduction factor for stepsize control. */
86 private double minReduction;
87
88 /** Maximal growth factor for stepsize control. */
89 private double maxGrowth;
90
91 /**
92 * Build a multistep integrator with the given stepsize bounds.
93 * <p>The default starter integrator is set to the {@link
94 * DormandPrince853Integrator Dormand-Prince 8(5,3)} integrator with
95 * some defaults settings.</p>
96 * <p>
97 * The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
98 * </p>
99 * @param name name of the method
100 * @param nSteps number of steps of the multistep method
101 * (excluding the one being computed)
102 * @param order order of the method
103 * @param minStep minimal step (must be positive even for backward
104 * integration), the last step can be smaller than this
105 * @param maxStep maximal step (must be positive even for backward
106 * integration)
107 * @param scalAbsoluteTolerance allowed absolute error
108 * @param scalRelativeTolerance allowed relative error
109 * @exception NumberIsTooSmallException if number of steps is smaller than 2
110 */
111 protected MultistepIntegrator(final String name, final int nSteps,
112 final int order,
113 final double minStep, final double maxStep,
114 final double scalAbsoluteTolerance,
115 final double scalRelativeTolerance)
116 throws NumberIsTooSmallException {
117
118 super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
119
120 if (nSteps < 2) {
121 throw new NumberIsTooSmallException(
122 LocalizedFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
123 nSteps, 2, true);
124 }
125
126 starter = new DormandPrince853Integrator(minStep, maxStep,
127 scalAbsoluteTolerance,
128 scalRelativeTolerance);
129 this.nSteps = nSteps;
130
131 exp = -1.0 / order;
132
133 // set the default values of the algorithm control parameters
134 setSafety(0.9);
135 setMinReduction(0.2);
136 setMaxGrowth(JdkMath.pow(2.0, -exp));
137 }
138
139 /**
140 * Build a multistep integrator with the given stepsize bounds.
141 * <p>The default starter integrator is set to the {@link
142 * DormandPrince853Integrator Dormand-Prince 8(5,3)} integrator with
143 * some defaults settings.</p>
144 * <p>
145 * The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
146 * </p>
147 * @param name name of the method
148 * @param nSteps number of steps of the multistep method
149 * (excluding the one being computed)
150 * @param order order of the method
151 * @param minStep minimal step (must be positive even for backward
152 * integration), the last step can be smaller than this
153 * @param maxStep maximal step (must be positive even for backward
154 * integration)
155 * @param vecAbsoluteTolerance allowed absolute error
156 * @param vecRelativeTolerance allowed relative error
157 */
158 protected MultistepIntegrator(final String name, final int nSteps,
159 final int order,
160 final double minStep, final double maxStep,
161 final double[] vecAbsoluteTolerance,
162 final double[] vecRelativeTolerance) {
163 super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
164 starter = new DormandPrince853Integrator(minStep, maxStep,
165 vecAbsoluteTolerance,
166 vecRelativeTolerance);
167 this.nSteps = nSteps;
168
169 exp = -1.0 / order;
170
171 // set the default values of the algorithm control parameters
172 setSafety(0.9);
173 setMinReduction(0.2);
174 setMaxGrowth(JdkMath.pow(2.0, -exp));
175 }
176
177 /**
178 * Get the starter integrator.
179 * @return starter integrator
180 */
181 public ODEIntegrator getStarterIntegrator() {
182 return starter;
183 }
184
185 /**
186 * Set the starter integrator.
187 * <p>The various step and event handlers for this starter integrator
188 * will be managed automatically by the multi-step integrator. Any
189 * user configuration for these elements will be cleared before use.</p>
190 * @param starterIntegrator starter integrator
191 */
192 public void setStarterIntegrator(FirstOrderIntegrator starterIntegrator) {
193 this.starter = starterIntegrator;
194 }
195
196 /** Start the integration.
197 * <p>This method computes one step using the underlying starter integrator,
198 * and initializes the Nordsieck vector at step start. The starter integrator
199 * purpose is only to establish initial conditions, it does not really change
200 * time by itself. The top level multistep integrator remains in charge of
201 * handling time propagation and events handling as it will starts its own
202 * computation right from the beginning. In a sense, the starter integrator
203 * can be seen as a dummy one and so it will never trigger any user event nor
204 * call any user step handler.</p>
205 * @param t0 initial time
206 * @param y0 initial value of the state vector at t0
207 * @param t target time for the integration
208 * (can be set to a value smaller than <code>t0</code> for backward integration)
209 * @exception DimensionMismatchException if arrays dimension do not match equations settings
210 * @exception NumberIsTooSmallException if integration step is too small
211 * @exception MaxCountExceededException if the number of functions evaluations is exceeded
212 * @exception NoBracketingException if the location of an event cannot be bracketed
213 */
214 protected void start(final double t0, final double[] y0, final double t)
215 throws DimensionMismatchException, NumberIsTooSmallException,
216 MaxCountExceededException, NoBracketingException {
217
218 // make sure NO user event nor user step handler is triggered,
219 // this is the task of the top level integrator, not the task
220 // of the starter integrator
221 starter.clearEventHandlers();
222 starter.clearStepHandlers();
223
224 // set up one specific step handler to extract initial Nordsieck vector
225 starter.addStepHandler(new NordsieckInitializer((nSteps + 3) / 2, y0.length));
226
227 // start integration, expecting a InitializationCompletedMarkerException
228 try {
229
230 if (starter instanceof AbstractIntegrator) {
231 ((AbstractIntegrator) starter).integrate(getExpandable(), t);
232 } else {
233 starter.integrate(new FirstOrderDifferentialEquations() {
234
235 /** {@inheritDoc} */
236 @Override
237 public int getDimension() {
238 return getExpandable().getTotalDimension();
239 }
240
241 /** {@inheritDoc} */
242 @Override
243 public void computeDerivatives(double t, double[] y, double[] yDot) {
244 getExpandable().computeDerivatives(t, y, yDot);
245 }
246 }, t0, y0, t, new double[y0.length]);
247 }
248
249 // we should not reach this step
250 throw new MathIllegalStateException(LocalizedFormats.MULTISTEP_STARTER_STOPPED_EARLY);
251 } catch (InitializationCompletedMarkerException icme) { // NOPMD
252 // this is the expected nominal interruption of the start integrator
253
254 // count the evaluations used by the starter
255 getCounter().increment(starter.getEvaluations());
256 }
257
258 // remove the specific step handler
259 starter.clearStepHandlers();
260 }
261
262 /** Initialize the high order scaled derivatives at step start.
263 * @param h step size to use for scaling
264 * @param t first steps times
265 * @param y first steps states
266 * @param yDot first steps derivatives
267 * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>,
268 * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
269 */
270 protected abstract Array2DRowRealMatrix initializeHighOrderDerivatives(double h, double[] t,
271 double[][] y,
272 double[][] yDot);
273
274 /** Get the minimal reduction factor for stepsize control.
275 * @return minimal reduction factor
276 */
277 public double getMinReduction() {
278 return minReduction;
279 }
280
281 /** Set the minimal reduction factor for stepsize control.
282 * @param minReduction minimal reduction factor
283 */
284 public void setMinReduction(final double minReduction) {
285 this.minReduction = minReduction;
286 }
287
288 /** Get the maximal growth factor for stepsize control.
289 * @return maximal growth factor
290 */
291 public double getMaxGrowth() {
292 return maxGrowth;
293 }
294
295 /** Set the maximal growth factor for stepsize control.
296 * @param maxGrowth maximal growth factor
297 */
298 public void setMaxGrowth(final double maxGrowth) {
299 this.maxGrowth = maxGrowth;
300 }
301
302 /** Get the safety factor for stepsize control.
303 * @return safety factor
304 */
305 public double getSafety() {
306 return safety;
307 }
308
309 /** Set the safety factor for stepsize control.
310 * @param safety safety factor
311 */
312 public void setSafety(final double safety) {
313 this.safety = safety;
314 }
315
316 /** Get the number of steps of the multistep method (excluding the one being computed).
317 * @return number of steps of the multistep method (excluding the one being computed)
318 */
319 public int getNSteps() {
320 return nSteps;
321 }
322
323 /** Compute step grow/shrink factor according to normalized error.
324 * @param error normalized error of the current step
325 * @return grow/shrink factor for next step
326 */
327 protected double computeStepGrowShrinkFactor(final double error) {
328 return JdkMath.min(maxGrowth, JdkMath.max(minReduction, safety * JdkMath.pow(error, exp)));
329 }
330
331 /** Transformer used to convert the first step to Nordsieck representation.
332 * @deprecated as of 3.6 this unused interface is deprecated
333 */
334 @Deprecated
335 public interface NordsieckTransformer {
336 /** Initialize the high order scaled derivatives at step start.
337 * @param h step size to use for scaling
338 * @param t first steps times
339 * @param y first steps states
340 * @param yDot first steps derivatives
341 * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>,
342 * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
343 */
344 Array2DRowRealMatrix initializeHighOrderDerivatives(double h, double[] t,
345 double[][] y,
346 double[][] yDot);
347 }
348
349 /** Specialized step handler storing the first step. */
350 private final class NordsieckInitializer implements StepHandler {
351
352 /** Steps counter. */
353 private int count;
354
355 /** First steps times. */
356 private final double[] t;
357
358 /** First steps states. */
359 private final double[][] y;
360
361 /** First steps derivatives. */
362 private final double[][] yDot;
363
364 /** Simple constructor.
365 * @param nbStartPoints number of start points (including the initial point)
366 * @param n problem dimension
367 */
368 NordsieckInitializer(final int nbStartPoints, final int n) {
369 this.count = 0;
370 this.t = new double[nbStartPoints];
371 this.y = new double[nbStartPoints][n];
372 this.yDot = new double[nbStartPoints][n];
373 }
374
375 /** {@inheritDoc} */
376 @Override
377 public void handleStep(StepInterpolator interpolator, boolean isLast)
378 throws MaxCountExceededException {
379
380 final double prev = interpolator.getPreviousTime();
381 final double curr = interpolator.getCurrentTime();
382
383 if (count == 0) {
384 // first step, we need to store also the point at the beginning of the step
385 interpolator.setInterpolatedTime(prev);
386 t[0] = prev;
387 final ExpandableStatefulODE expandable = getExpandable();
388 final EquationsMapper primary = expandable.getPrimaryMapper();
389 primary.insertEquationData(interpolator.getInterpolatedState(), y[count]);
390 primary.insertEquationData(interpolator.getInterpolatedDerivatives(), yDot[count]);
391 int index = 0;
392 for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
393 secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y[count]);
394 secondary.insertEquationData(interpolator.getInterpolatedSecondaryDerivatives(index), yDot[count]);
395 ++index;
396 }
397 }
398
399 // store the point at the end of the step
400 ++count;
401 interpolator.setInterpolatedTime(curr);
402 t[count] = curr;
403
404 final ExpandableStatefulODE expandable = getExpandable();
405 final EquationsMapper primary = expandable.getPrimaryMapper();
406 primary.insertEquationData(interpolator.getInterpolatedState(), y[count]);
407 primary.insertEquationData(interpolator.getInterpolatedDerivatives(), yDot[count]);
408 int index = 0;
409 for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
410 secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y[count]);
411 secondary.insertEquationData(interpolator.getInterpolatedSecondaryDerivatives(index), yDot[count]);
412 ++index;
413 }
414
415 if (count == t.length - 1) {
416
417 // this was the last point we needed, we can compute the derivatives
418 stepStart = t[0];
419 stepSize = (t[t.length - 1] - t[0]) / (t.length - 1);
420
421 // first scaled derivative
422 scaled = yDot[0].clone();
423 for (int j = 0; j < scaled.length; ++j) {
424 scaled[j] *= stepSize;
425 }
426
427 // higher order derivatives
428 nordsieck = initializeHighOrderDerivatives(stepSize, t, y, yDot);
429
430 // stop the integrator now that all needed steps have been handled
431 throw new InitializationCompletedMarkerException();
432 }
433 }
434
435 /** {@inheritDoc} */
436 @Override
437 public void init(double t0, double[] y0, double time) {
438 // nothing to do
439 }
440 }
441
442 /** Marker exception used ONLY to stop the starter integrator after first step. */
443 private static final class InitializationCompletedMarkerException
444 extends RuntimeException {
445
446 /** Serializable version identifier. */
447 private static final long serialVersionUID = -1914085471038046418L;
448
449 /** Simple constructor. */
450 InitializationCompletedMarkerException() {
451 super((Throwable) null);
452 }
453 }
454 }