View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode;
19  
20  import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
21  import org.apache.commons.math4.legacy.exception.MathIllegalStateException;
22  import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
23  import org.apache.commons.math4.legacy.exception.NoBracketingException;
24  import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
25  import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
26  import org.apache.commons.math4.legacy.linear.Array2DRowRealMatrix;
27  import org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator;
28  import org.apache.commons.math4.legacy.ode.nonstiff.DormandPrince853Integrator;
29  import org.apache.commons.math4.legacy.ode.sampling.StepHandler;
30  import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator;
31  import org.apache.commons.math4.core.jdkmath.JdkMath;
32  
33  /**
34   * This class is the base class for multistep integrators for Ordinary
35   * Differential Equations.
36   * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
37   * <div style="white-space: pre"><code>
38   * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
39   * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
40   * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
41   * ...
42   * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
43   * </code></div>
44   * <p>Rather than storing several previous steps separately, this implementation uses
45   * the Nordsieck vector with higher degrees scaled derivatives all taken at the same
46   * step (y<sub>n</sub>, s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
47   * <div style="white-space: pre"><code>
48   * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
49   * </code></div>
50   * (we omit the k index in the notation for clarity)
51   * <p>
52   * Multistep integrators with Nordsieck representation are highly sensitive to
53   * large step changes because when the step is multiplied by factor a, the
54   * k<sup>th</sup> component of the Nordsieck vector is multiplied by a<sup>k</sup>
55   * and the last components are the least accurate ones. The default max growth
56   * factor is therefore set to a quite low value: 2<sup>1/order</sup>.
57   * </p>
58   *
59   * @see org.apache.commons.math4.legacy.ode.nonstiff.AdamsBashforthIntegrator
60   * @see org.apache.commons.math4.legacy.ode.nonstiff.AdamsMoultonIntegrator
61   * @since 2.0
62   */
63  public abstract class MultistepIntegrator extends AdaptiveStepsizeIntegrator {
64  
65      /** First scaled derivative (h y'). */
66      protected double[] scaled;
67  
68      /** Nordsieck matrix of the higher scaled derivatives.
69       * <p>(h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ..., h<sup>k</sup>/k! y<sup>(k)</sup>)</p>
70       */
71      protected Array2DRowRealMatrix nordsieck;
72  
73      /** Starter integrator. */
74      private FirstOrderIntegrator starter;
75  
76      /** Number of steps of the multistep method (excluding the one being computed). */
77      private final int nSteps;
78  
79      /** Stepsize control exponent. */
80      private double exp;
81  
82      /** Safety factor for stepsize control. */
83      private double safety;
84  
85      /** Minimal reduction factor for stepsize control. */
86      private double minReduction;
87  
88      /** Maximal growth factor for stepsize control. */
89      private double maxGrowth;
90  
91      /**
92       * Build a multistep integrator with the given stepsize bounds.
93       * <p>The default starter integrator is set to the {@link
94       * DormandPrince853Integrator Dormand-Prince 8(5,3)} integrator with
95       * some defaults settings.</p>
96       * <p>
97       * The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
98       * </p>
99       * @param name name of the method
100      * @param nSteps number of steps of the multistep method
101      * (excluding the one being computed)
102      * @param order order of the method
103      * @param minStep minimal step (must be positive even for backward
104      * integration), the last step can be smaller than this
105      * @param maxStep maximal step (must be positive even for backward
106      * integration)
107      * @param scalAbsoluteTolerance allowed absolute error
108      * @param scalRelativeTolerance allowed relative error
109      * @exception NumberIsTooSmallException if number of steps is smaller than 2
110      */
111     protected MultistepIntegrator(final String name, final int nSteps,
112                                   final int order,
113                                   final double minStep, final double maxStep,
114                                   final double scalAbsoluteTolerance,
115                                   final double scalRelativeTolerance)
116         throws NumberIsTooSmallException {
117 
118         super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
119 
120         if (nSteps < 2) {
121             throw new NumberIsTooSmallException(
122                   LocalizedFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
123                   nSteps, 2, true);
124         }
125 
126         starter = new DormandPrince853Integrator(minStep, maxStep,
127                                                  scalAbsoluteTolerance,
128                                                  scalRelativeTolerance);
129         this.nSteps = nSteps;
130 
131         exp = -1.0 / order;
132 
133         // set the default values of the algorithm control parameters
134         setSafety(0.9);
135         setMinReduction(0.2);
136         setMaxGrowth(JdkMath.pow(2.0, -exp));
137     }
138 
139     /**
140      * Build a multistep integrator with the given stepsize bounds.
141      * <p>The default starter integrator is set to the {@link
142      * DormandPrince853Integrator Dormand-Prince 8(5,3)} integrator with
143      * some defaults settings.</p>
144      * <p>
145      * The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
146      * </p>
147      * @param name name of the method
148      * @param nSteps number of steps of the multistep method
149      * (excluding the one being computed)
150      * @param order order of the method
151      * @param minStep minimal step (must be positive even for backward
152      * integration), the last step can be smaller than this
153      * @param maxStep maximal step (must be positive even for backward
154      * integration)
155      * @param vecAbsoluteTolerance allowed absolute error
156      * @param vecRelativeTolerance allowed relative error
157      */
158     protected MultistepIntegrator(final String name, final int nSteps,
159                                   final int order,
160                                   final double minStep, final double maxStep,
161                                   final double[] vecAbsoluteTolerance,
162                                   final double[] vecRelativeTolerance) {
163         super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
164         starter = new DormandPrince853Integrator(minStep, maxStep,
165                                                  vecAbsoluteTolerance,
166                                                  vecRelativeTolerance);
167         this.nSteps = nSteps;
168 
169         exp = -1.0 / order;
170 
171         // set the default values of the algorithm control parameters
172         setSafety(0.9);
173         setMinReduction(0.2);
174         setMaxGrowth(JdkMath.pow(2.0, -exp));
175     }
176 
177     /**
178      * Get the starter integrator.
179      * @return starter integrator
180      */
181     public ODEIntegrator getStarterIntegrator() {
182         return starter;
183     }
184 
185     /**
186      * Set the starter integrator.
187      * <p>The various step and event handlers for this starter integrator
188      * will be managed automatically by the multi-step integrator. Any
189      * user configuration for these elements will be cleared before use.</p>
190      * @param starterIntegrator starter integrator
191      */
192     public void setStarterIntegrator(FirstOrderIntegrator starterIntegrator) {
193         this.starter = starterIntegrator;
194     }
195 
196     /** Start the integration.
197      * <p>This method computes one step using the underlying starter integrator,
198      * and initializes the Nordsieck vector at step start. The starter integrator
199      * purpose is only to establish initial conditions, it does not really change
200      * time by itself. The top level multistep integrator remains in charge of
201      * handling time propagation and events handling as it will starts its own
202      * computation right from the beginning. In a sense, the starter integrator
203      * can be seen as a dummy one and so it will never trigger any user event nor
204      * call any user step handler.</p>
205      * @param t0 initial time
206      * @param y0 initial value of the state vector at t0
207      * @param t target time for the integration
208      * (can be set to a value smaller than <code>t0</code> for backward integration)
209      * @exception DimensionMismatchException if arrays dimension do not match equations settings
210      * @exception NumberIsTooSmallException if integration step is too small
211      * @exception MaxCountExceededException if the number of functions evaluations is exceeded
212      * @exception NoBracketingException if the location of an event cannot be bracketed
213      */
214     protected void start(final double t0, final double[] y0, final double t)
215         throws DimensionMismatchException, NumberIsTooSmallException,
216                MaxCountExceededException, NoBracketingException {
217 
218         // make sure NO user event nor user step handler is triggered,
219         // this is the task of the top level integrator, not the task
220         // of the starter integrator
221         starter.clearEventHandlers();
222         starter.clearStepHandlers();
223 
224         // set up one specific step handler to extract initial Nordsieck vector
225         starter.addStepHandler(new NordsieckInitializer((nSteps + 3) / 2, y0.length));
226 
227         // start integration, expecting a InitializationCompletedMarkerException
228         try {
229 
230             if (starter instanceof AbstractIntegrator) {
231                 ((AbstractIntegrator) starter).integrate(getExpandable(), t);
232             } else {
233                 starter.integrate(new FirstOrderDifferentialEquations() {
234 
235                     /** {@inheritDoc} */
236                     @Override
237                     public int getDimension() {
238                         return getExpandable().getTotalDimension();
239                     }
240 
241                     /** {@inheritDoc} */
242                     @Override
243                     public void computeDerivatives(double t, double[] y, double[] yDot) {
244                         getExpandable().computeDerivatives(t, y, yDot);
245                     }
246                 }, t0, y0, t, new double[y0.length]);
247             }
248 
249             // we should not reach this step
250             throw new MathIllegalStateException(LocalizedFormats.MULTISTEP_STARTER_STOPPED_EARLY);
251         } catch (InitializationCompletedMarkerException icme) { // NOPMD
252             // this is the expected nominal interruption of the start integrator
253 
254             // count the evaluations used by the starter
255             getCounter().increment(starter.getEvaluations());
256         }
257 
258         // remove the specific step handler
259         starter.clearStepHandlers();
260     }
261 
262     /** Initialize the high order scaled derivatives at step start.
263      * @param h step size to use for scaling
264      * @param t first steps times
265      * @param y first steps states
266      * @param yDot first steps derivatives
267      * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>,
268      * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
269      */
270     protected abstract Array2DRowRealMatrix initializeHighOrderDerivatives(double h, double[] t,
271                                                                            double[][] y,
272                                                                            double[][] yDot);
273 
274     /** Get the minimal reduction factor for stepsize control.
275      * @return minimal reduction factor
276      */
277     public double getMinReduction() {
278         return minReduction;
279     }
280 
281     /** Set the minimal reduction factor for stepsize control.
282      * @param minReduction minimal reduction factor
283      */
284     public void setMinReduction(final double minReduction) {
285         this.minReduction = minReduction;
286     }
287 
288     /** Get the maximal growth factor for stepsize control.
289      * @return maximal growth factor
290      */
291     public double getMaxGrowth() {
292         return maxGrowth;
293     }
294 
295     /** Set the maximal growth factor for stepsize control.
296      * @param maxGrowth maximal growth factor
297      */
298     public void setMaxGrowth(final double maxGrowth) {
299         this.maxGrowth = maxGrowth;
300     }
301 
302     /** Get the safety factor for stepsize control.
303      * @return safety factor
304      */
305     public double getSafety() {
306       return safety;
307     }
308 
309     /** Set the safety factor for stepsize control.
310      * @param safety safety factor
311      */
312     public void setSafety(final double safety) {
313       this.safety = safety;
314     }
315 
316     /** Get the number of steps of the multistep method (excluding the one being computed).
317      * @return number of steps of the multistep method (excluding the one being computed)
318      */
319     public int getNSteps() {
320       return nSteps;
321     }
322 
323     /** Compute step grow/shrink factor according to normalized error.
324      * @param error normalized error of the current step
325      * @return grow/shrink factor for next step
326      */
327     protected double computeStepGrowShrinkFactor(final double error) {
328         return JdkMath.min(maxGrowth, JdkMath.max(minReduction, safety * JdkMath.pow(error, exp)));
329     }
330 
331     /** Transformer used to convert the first step to Nordsieck representation.
332      * @deprecated as of 3.6 this unused interface is deprecated
333      */
334     @Deprecated
335     public interface NordsieckTransformer {
336         /** Initialize the high order scaled derivatives at step start.
337          * @param h step size to use for scaling
338          * @param t first steps times
339          * @param y first steps states
340          * @param yDot first steps derivatives
341          * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>,
342          * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
343          */
344         Array2DRowRealMatrix initializeHighOrderDerivatives(double h, double[] t,
345                                                             double[][] y,
346                                                             double[][] yDot);
347     }
348 
349     /** Specialized step handler storing the first step. */
350     private final class NordsieckInitializer implements StepHandler {
351 
352         /** Steps counter. */
353         private int count;
354 
355         /** First steps times. */
356         private final double[] t;
357 
358         /** First steps states. */
359         private final double[][] y;
360 
361         /** First steps derivatives. */
362         private final double[][] yDot;
363 
364         /** Simple constructor.
365          * @param nbStartPoints number of start points (including the initial point)
366          * @param n problem dimension
367          */
368         NordsieckInitializer(final int nbStartPoints, final int n) {
369             this.count = 0;
370             this.t     = new double[nbStartPoints];
371             this.y     = new double[nbStartPoints][n];
372             this.yDot  = new double[nbStartPoints][n];
373         }
374 
375         /** {@inheritDoc} */
376         @Override
377         public void handleStep(StepInterpolator interpolator, boolean isLast)
378             throws MaxCountExceededException {
379 
380             final double prev = interpolator.getPreviousTime();
381             final double curr = interpolator.getCurrentTime();
382 
383             if (count == 0) {
384                 // first step, we need to store also the point at the beginning of the step
385                 interpolator.setInterpolatedTime(prev);
386                 t[0] = prev;
387                 final ExpandableStatefulODE expandable = getExpandable();
388                 final EquationsMapper primary = expandable.getPrimaryMapper();
389                 primary.insertEquationData(interpolator.getInterpolatedState(), y[count]);
390                 primary.insertEquationData(interpolator.getInterpolatedDerivatives(), yDot[count]);
391                 int index = 0;
392                 for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
393                     secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y[count]);
394                     secondary.insertEquationData(interpolator.getInterpolatedSecondaryDerivatives(index), yDot[count]);
395                     ++index;
396                 }
397             }
398 
399             // store the point at the end of the step
400             ++count;
401             interpolator.setInterpolatedTime(curr);
402             t[count] = curr;
403 
404             final ExpandableStatefulODE expandable = getExpandable();
405             final EquationsMapper primary = expandable.getPrimaryMapper();
406             primary.insertEquationData(interpolator.getInterpolatedState(), y[count]);
407             primary.insertEquationData(interpolator.getInterpolatedDerivatives(), yDot[count]);
408             int index = 0;
409             for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
410                 secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y[count]);
411                 secondary.insertEquationData(interpolator.getInterpolatedSecondaryDerivatives(index), yDot[count]);
412                 ++index;
413             }
414 
415             if (count == t.length - 1) {
416 
417                 // this was the last point we needed, we can compute the derivatives
418                 stepStart = t[0];
419                 stepSize  = (t[t.length - 1] - t[0]) / (t.length - 1);
420 
421                 // first scaled derivative
422                 scaled = yDot[0].clone();
423                 for (int j = 0; j < scaled.length; ++j) {
424                     scaled[j] *= stepSize;
425                 }
426 
427                 // higher order derivatives
428                 nordsieck = initializeHighOrderDerivatives(stepSize, t, y, yDot);
429 
430                 // stop the integrator now that all needed steps have been handled
431                 throw new InitializationCompletedMarkerException();
432             }
433         }
434 
435         /** {@inheritDoc} */
436         @Override
437         public void init(double t0, double[] y0, double time) {
438             // nothing to do
439         }
440     }
441 
442     /** Marker exception used ONLY to stop the starter integrator after first step. */
443     private static final class InitializationCompletedMarkerException
444         extends RuntimeException {
445 
446         /** Serializable version identifier. */
447         private static final long serialVersionUID = -1914085471038046418L;
448 
449         /** Simple constructor. */
450         InitializationCompletedMarkerException() {
451             super((Throwable) null);
452         }
453     }
454 }