View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator;
21  
22  /**
23   * This class implements a step interpolator for the classical fourth
24   * order Runge-Kutta integrator.
25   *
26   * <p>This interpolator allows to compute dense output inside the last
27   * step computed. The interpolation equation is consistent with the
28   * integration scheme :
29   * <ul>
30   *   <li>Using reference point at step start:<br>
31   *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
32   *                    + &theta; (h/6) [  (6 - 9 &theta; + 4 &theta;<sup>2</sup>) y'<sub>1</sub>
33   *                                     + (    6 &theta; - 4 &theta;<sup>2</sup>) (y'<sub>2</sub> + y'<sub>3</sub>)
34   *                                     + (   -3 &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
35   *                                    ]
36   *   </li>
37   *   <li>Using reference point at step end:<br>
38   *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
39   *                    + (1 - &theta;) (h/6) [ (-4 &theta;^2 + 5 &theta; - 1) y'<sub>1</sub>
40   *                                          +(4 &theta;^2 - 2 &theta; - 2) (y'<sub>2</sub> + y'<sub>3</sub>)
41   *                                          -(4 &theta;^2 +   &theta; + 1) y'<sub>4</sub>
42   *                                        ]
43   *   </li>
44   * </ul>
45   *
46   * where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
47   * evaluations of the derivatives already computed during the
48   * step.
49   *
50   * @see ClassicalRungeKuttaIntegrator
51   * @since 1.2
52   */
53  
54  class ClassicalRungeKuttaStepInterpolator
55      extends RungeKuttaStepInterpolator {
56  
57      /** Serializable version identifier. */
58      private static final long serialVersionUID = 20111120L;
59  
60      /** Simple constructor.
61       * This constructor builds an instance that is not usable yet, the
62       * {@link RungeKuttaStepInterpolator#reinitialize} method should be
63       * called before using the instance in order to initialize the
64       * internal arrays. This constructor is used only in order to delay
65       * the initialization in some cases. The {@link RungeKuttaIntegrator}
66       * class uses the prototyping design pattern to create the step
67       * interpolators by cloning an uninitialized model and latter initializing
68       * the copy.
69       */
70      // CHECKSTYLE: stop RedundantModifier
71      // the public modifier here is needed for serialization
72      public ClassicalRungeKuttaStepInterpolator() {
73      }
74      // CHECKSTYLE: resume RedundantModifier
75  
76      /** Copy constructor.
77       * @param interpolator interpolator to copy from. The copy is a deep
78       * copy: its arrays are separated from the original arrays of the
79       * instance
80       */
81      ClassicalRungeKuttaStepInterpolator(final ClassicalRungeKuttaStepInterpolator interpolator) {
82          super(interpolator);
83      }
84  
85      /** {@inheritDoc} */
86      @Override
87      protected StepInterpolator doCopy() {
88          return new ClassicalRungeKuttaStepInterpolator(this);
89      }
90  
91      /** {@inheritDoc} */
92      @Override
93      protected void computeInterpolatedStateAndDerivatives(final double theta,
94                                              final double oneMinusThetaH) {
95  
96          final double oneMinusTheta  = 1 - theta;
97          final double oneMinus2Theta = 1 - 2 * theta;
98          final double coeffDot1     = oneMinusTheta * oneMinus2Theta;
99          final double coeffDot23    = 2 * theta * oneMinusTheta;
100         final double coeffDot4     = -theta * oneMinus2Theta;
101         if (previousState != null && theta <= 0.5) {
102             final double fourTheta2     = 4 * theta * theta;
103             final double s             = theta * h / 6.0;
104             final double coeff1        = s * ( 6 - 9 * theta + fourTheta2);
105             final double coeff23       = s * ( 6 * theta - fourTheta2);
106             final double coeff4        = s * (-3 * theta + fourTheta2);
107             for (int i = 0; i < interpolatedState.length; ++i) {
108                 final double yDot1  = yDotK[0][i];
109                 final double yDot23 = yDotK[1][i] + yDotK[2][i];
110                 final double yDot4  = yDotK[3][i];
111                 interpolatedState[i] =
112                         previousState[i] + coeff1  * yDot1 + coeff23 * yDot23 + coeff4  * yDot4;
113                 interpolatedDerivatives[i] =
114                         coeffDot1 * yDot1 + coeffDot23 * yDot23 + coeffDot4 * yDot4;
115             }
116         } else {
117             final double fourTheta      = 4 * theta;
118             final double s             = oneMinusThetaH / 6.0;
119             final double coeff1        = s * ((-fourTheta + 5) * theta - 1);
120             final double coeff23       = s * (( fourTheta - 2) * theta - 2);
121             final double coeff4        = s * ((-fourTheta - 1) * theta - 1);
122             for (int i = 0; i < interpolatedState.length; ++i) {
123                 final double yDot1  = yDotK[0][i];
124                 final double yDot23 = yDotK[1][i] + yDotK[2][i];
125                 final double yDot4  = yDotK[3][i];
126                 interpolatedState[i] =
127                         currentState[i] + coeff1  * yDot1 + coeff23 * yDot23 + coeff4  * yDot4;
128                 interpolatedDerivatives[i] =
129                         coeffDot1 * yDot1 + coeffDot23 * yDot23 + coeffDot4 * yDot4;
130             }
131         }
132     }
133 }