View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.legacy.core.Field;
21  import org.apache.commons.math4.legacy.core.RealFieldElement;
22  import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
23  import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
24  import org.apache.commons.math4.legacy.exception.NoBracketingException;
25  import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
26  import org.apache.commons.math4.legacy.ode.FieldEquationsMapper;
27  import org.apache.commons.math4.legacy.ode.FieldExpandableODE;
28  import org.apache.commons.math4.legacy.ode.FieldODEState;
29  import org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative;
30  import org.apache.commons.math4.legacy.core.MathArrays;
31  
32  /**
33   * This class implements the common part of all embedded Runge-Kutta
34   * integrators for Ordinary Differential Equations.
35   *
36   * <p>These methods are embedded explicit Runge-Kutta methods with two
37   * sets of coefficients allowing to estimate the error, their Butcher
38   * arrays are as follows :
39   * <pre>
40   *    0  |
41   *   c2  | a21
42   *   c3  | a31  a32
43   *   ... |        ...
44   *   cs  | as1  as2  ...  ass-1
45   *       |--------------------------
46   *       |  b1   b2  ...   bs-1  bs
47   *       |  b'1  b'2 ...   b's-1 b's
48   * </pre>
49   *
50   * <p>In fact, we rather use the array defined by ej = bj - b'j to
51   * compute directly the error rather than computing two estimates and
52   * then comparing them.</p>
53   *
54   * <p>Some methods are qualified as <i>fsal</i> (first same as last)
55   * methods. This means the last evaluation of the derivatives in one
56   * step is the same as the first in the next step. Then, this
57   * evaluation can be reused from one step to the next one and the cost
58   * of such a method is really s-1 evaluations despite the method still
59   * has s stages. This behaviour is true only for successful steps, if
60   * the step is rejected after the error estimation phase, no
61   * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
62   * asi = bi for all i.</p>
63   *
64   * @param <T> the type of the field elements
65   * @since 3.6
66   */
67  
68  public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
69      extends AdaptiveStepsizeFieldIntegrator<T>
70      implements FieldButcherArrayProvider<T> {
71  
72      /** Index of the pre-computed derivative for <i>fsal</i> methods. */
73      private final int fsal;
74  
75      /** Time steps from Butcher array (without the first zero). */
76      private final T[] c;
77  
78      /** Internal weights from Butcher array (without the first empty row). */
79      private final T[][] a;
80  
81      /** External weights for the high order method from Butcher array. */
82      private final T[] b;
83  
84      /** Stepsize control exponent. */
85      private final T exp;
86  
87      /** Safety factor for stepsize control. */
88      private T safety;
89  
90      /** Minimal reduction factor for stepsize control. */
91      private T minReduction;
92  
93      /** Maximal growth factor for stepsize control. */
94      private T maxGrowth;
95  
96      /** Build a Runge-Kutta integrator with the given Butcher array.
97       * @param field field to which the time and state vector elements belong
98       * @param name name of the method
99       * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
100      * or -1 if method is not <i>fsal</i>
101      * @param minStep minimal step (sign is irrelevant, regardless of
102      * integration direction, forward or backward), the last step can
103      * be smaller than this
104      * @param maxStep maximal step (sign is irrelevant, regardless of
105      * integration direction, forward or backward), the last step can
106      * be smaller than this
107      * @param scalAbsoluteTolerance allowed absolute error
108      * @param scalRelativeTolerance allowed relative error
109      */
110     protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
111                                                 final double minStep, final double maxStep,
112                                                 final double scalAbsoluteTolerance,
113                                                 final double scalRelativeTolerance) {
114 
115         super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
116 
117         this.fsal = fsal;
118         this.c    = getC();
119         this.a    = getA();
120         this.b    = getB();
121 
122         exp = field.getOne().divide(-getOrder());
123 
124         // set the default values of the algorithm control parameters
125         setSafety(field.getZero().add(0.9));
126         setMinReduction(field.getZero().add(0.2));
127         setMaxGrowth(field.getZero().add(10.0));
128     }
129 
130     /** Build a Runge-Kutta integrator with the given Butcher array.
131      * @param field field to which the time and state vector elements belong
132      * @param name name of the method
133      * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
134      * or -1 if method is not <i>fsal</i>
135      * @param minStep minimal step (must be positive even for backward
136      * integration), the last step can be smaller than this
137      * @param maxStep maximal step (must be positive even for backward
138      * integration)
139      * @param vecAbsoluteTolerance allowed absolute error
140      * @param vecRelativeTolerance allowed relative error
141      */
142     protected EmbeddedRungeKuttaFieldIntegrator(final Field<T> field, final String name, final int fsal,
143                                                 final double   minStep, final double maxStep,
144                                                 final double[] vecAbsoluteTolerance,
145                                                 final double[] vecRelativeTolerance) {
146 
147         super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
148 
149         this.fsal = fsal;
150         this.c    = getC();
151         this.a    = getA();
152         this.b    = getB();
153 
154         exp = field.getOne().divide(-getOrder());
155 
156         // set the default values of the algorithm control parameters
157         setSafety(field.getZero().add(0.9));
158         setMinReduction(field.getZero().add(0.2));
159         setMaxGrowth(field.getZero().add(10.0));
160     }
161 
162     /** Create a fraction.
163      * @param p numerator
164      * @param q denominator
165      * @return p/q computed in the instance field
166      */
167     protected T fraction(final int p, final int q) {
168         return getField().getOne().multiply(p).divide(q);
169     }
170 
171     /** Create a fraction.
172      * @param p numerator
173      * @param q denominator
174      * @return p/q computed in the instance field
175      */
176     protected T fraction(final double p, final double q) {
177         return getField().getOne().multiply(p).divide(q);
178     }
179 
180     /** Create an interpolator.
181      * @param forward integration direction indicator
182      * @param yDotK slopes at the intermediate points
183      * @param globalPreviousState start of the global step
184      * @param globalCurrentState end of the global step
185      * @param mapper equations mapper for the all equations
186      * @return external weights for the high order method from Butcher array
187      */
188     protected abstract RungeKuttaFieldStepInterpolator<T> createInterpolator(boolean forward, T[][] yDotK,
189                                                                              FieldODEStateAndDerivative<T> globalPreviousState,
190                                                                              FieldODEStateAndDerivative<T> globalCurrentState,
191                                                                              FieldEquationsMapper<T> mapper);
192     /** Get the order of the method.
193      * @return order of the method
194      */
195     public abstract int getOrder();
196 
197     /** Get the safety factor for stepsize control.
198      * @return safety factor
199      */
200     public T getSafety() {
201         return safety;
202     }
203 
204     /** Set the safety factor for stepsize control.
205      * @param safety safety factor
206      */
207     public void setSafety(final T safety) {
208         this.safety = safety;
209     }
210 
211     /** {@inheritDoc} */
212     @Override
213     public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
214                                                    final FieldODEState<T> initialState, final T finalTime)
215         throws NumberIsTooSmallException, DimensionMismatchException,
216         MaxCountExceededException, NoBracketingException {
217 
218         sanityChecks(initialState, finalTime);
219         final T   t0 = initialState.getTime();
220         final T[] y0 = equations.getMapper().mapState(initialState);
221         setStepStart(initIntegration(equations, t0, y0, finalTime));
222         final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
223 
224         // create some internal working arrays
225         final int   stages = c.length + 1;
226         T[]         y      = y0;
227         final T[][] yDotK  = MathArrays.buildArray(getField(), stages, -1);
228         final T[]   yTmp   = MathArrays.buildArray(getField(), y0.length);
229 
230         // set up integration control objects
231         T  hNew           = getField().getZero();
232         boolean firstTime = true;
233 
234         // main integration loop
235         setIsLastStep(false);
236         do {
237 
238             // iterate over step size, ensuring local normalized error is smaller than 1
239             T error = getField().getZero().add(10);
240             while (error.subtract(1.0).getReal() >= 0) {
241 
242                 // first stage
243                 y        = equations.getMapper().mapState(getStepStart());
244                 yDotK[0] = equations.getMapper().mapDerivative(getStepStart());
245 
246                 if (firstTime) {
247                     final T[] scale = MathArrays.buildArray(getField(), mainSetDimension);
248                     if (vecAbsoluteTolerance == null) {
249                         for (int i = 0; i < scale.length; ++i) {
250                             scale[i] = y[i].abs().multiply(scalRelativeTolerance).add(scalAbsoluteTolerance);
251                         }
252                     } else {
253                         for (int i = 0; i < scale.length; ++i) {
254                             scale[i] = y[i].abs().multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
255                         }
256                     }
257                     hNew = initializeStep(forward, getOrder(), scale, getStepStart(), equations.getMapper());
258                     firstTime = false;
259                 }
260 
261                 setStepSize(hNew);
262                 if (forward) {
263                     if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() >= 0) {
264                         setStepSize(finalTime.subtract(getStepStart().getTime()));
265                     }
266                 } else {
267                     if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() <= 0) {
268                         setStepSize(finalTime.subtract(getStepStart().getTime()));
269                     }
270                 }
271 
272                 // next stages
273                 for (int k = 1; k < stages; ++k) {
274 
275                     for (int j = 0; j < y0.length; ++j) {
276                         T sum = yDotK[0][j].multiply(a[k-1][0]);
277                         for (int l = 1; l < k; ++l) {
278                             sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
279                         }
280                         yTmp[j] = y[j].add(getStepSize().multiply(sum));
281                     }
282 
283                     yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp);
284                 }
285 
286                 // estimate the state at the end of the step
287                 for (int j = 0; j < y0.length; ++j) {
288                     T sum    = yDotK[0][j].multiply(b[0]);
289                     for (int l = 1; l < stages; ++l) {
290                         sum = sum.add(yDotK[l][j].multiply(b[l]));
291                     }
292                     yTmp[j] = y[j].add(getStepSize().multiply(sum));
293                 }
294 
295                 // estimate the error at the end of the step
296                 error = estimateError(yDotK, y, yTmp, getStepSize());
297                 if (error.subtract(1.0).getReal() >= 0) {
298                     // reject the step and attempt to reduce error by stepsize control
299                     final T factor = RealFieldElement.min(maxGrowth,
300                                                    RealFieldElement.max(minReduction, safety.multiply(error.pow(exp))));
301                     hNew = filterStep(getStepSize().multiply(factor), forward, false);
302                 }
303             }
304             final T   stepEnd = getStepStart().getTime().add(getStepSize());
305             final T[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp);
306             final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<>(stepEnd, yTmp, yDotTmp);
307 
308             // local error is small enough: accept the step, trigger events and step handlers
309             System.arraycopy(yTmp, 0, y, 0, y0.length);
310             setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()),
311                                     finalTime));
312 
313             if (!isLastStep()) {
314 
315                 // stepsize control for next step
316                 final T factor = RealFieldElement.min(maxGrowth,
317                                                RealFieldElement.max(minReduction, safety.multiply(error.pow(exp))));
318                 final T  scaledH    = getStepSize().multiply(factor);
319                 final T  nextT      = getStepStart().getTime().add(scaledH);
320                 final boolean nextIsLast = forward ?
321                                            nextT.subtract(finalTime).getReal() >= 0 :
322                                            nextT.subtract(finalTime).getReal() <= 0;
323                 hNew = filterStep(scaledH, forward, nextIsLast);
324 
325                 final T  filteredNextT      = getStepStart().getTime().add(hNew);
326                 final boolean filteredNextIsLast = forward ?
327                                                    filteredNextT.subtract(finalTime).getReal() >= 0 :
328                                                    filteredNextT.subtract(finalTime).getReal() <= 0;
329                 if (filteredNextIsLast) {
330                     hNew = finalTime.subtract(getStepStart().getTime());
331                 }
332             }
333         } while (!isLastStep());
334 
335         final FieldODEStateAndDerivative<T> finalState = getStepStart();
336         resetInternalState();
337         return finalState;
338     }
339 
340     /** Get the minimal reduction factor for stepsize control.
341      * @return minimal reduction factor
342      */
343     public T getMinReduction() {
344         return minReduction;
345     }
346 
347     /** Set the minimal reduction factor for stepsize control.
348      * @param minReduction minimal reduction factor
349      */
350     public void setMinReduction(final T minReduction) {
351         this.minReduction = minReduction;
352     }
353 
354     /** Get the maximal growth factor for stepsize control.
355      * @return maximal growth factor
356      */
357     public T getMaxGrowth() {
358         return maxGrowth;
359     }
360 
361     /** Set the maximal growth factor for stepsize control.
362      * @param maxGrowth maximal growth factor
363      */
364     public void setMaxGrowth(final T maxGrowth) {
365         this.maxGrowth = maxGrowth;
366     }
367 
368     /** Compute the error ratio.
369      * @param yDotK derivatives computed during the first stages
370      * @param y0 estimate of the step at the start of the step
371      * @param y1 estimate of the step at the end of the step
372      * @param h  current step
373      * @return error ratio, greater than 1 if step should be rejected
374      */
375     protected abstract T estimateError(T[][] yDotK, T[] y0, T[] y1, T h);
376 }