View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.legacy.core.Field;
21  import org.apache.commons.math4.legacy.core.RealFieldElement;
22  import org.apache.commons.math4.legacy.ode.FieldEquationsMapper;
23  import org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative;
24  
25  /**
26   * This class represents an interpolator over the last step during an
27   * ODE integration for the 6th order Luther integrator.
28   *
29   * <p>This interpolator computes dense output inside the last
30   * step computed. The interpolation equation is consistent with the
31   * integration scheme.</p>
32   *
33   * @see LutherFieldIntegrator
34   * @param <T> the type of the field elements
35   * @since 3.6
36   */
37  
38  class LutherFieldStepInterpolator<T extends RealFieldElement<T>>
39      extends RungeKuttaFieldStepInterpolator<T> {
40  
41      /** -49 - 49 q. */
42      private final T c5a;
43  
44      /** 392 + 287 q. */
45      private final T c5b;
46  
47      /** -637 - 357 q. */
48      private final T c5c;
49  
50      /** 833 + 343 q. */
51      private final T c5d;
52  
53      /** -49 + 49 q. */
54      private final T c6a;
55  
56      /** -392 - 287 q. */
57      private final T c6b;
58  
59      /** -637 + 357 q. */
60      private final T c6c;
61  
62      /** 833 - 343 q. */
63      private final T c6d;
64  
65      /** 49 + 49 q. */
66      private final T d5a;
67  
68      /** -1372 - 847 q. */
69      private final T d5b;
70  
71      /** 2254 + 1029 q. */
72      private final T d5c;
73  
74      /** 49 - 49 q. */
75      private final T d6a;
76  
77      /** -1372 + 847 q. */
78      private final T d6b;
79  
80      /** 2254 - 1029 q. */
81      private final T d6c;
82  
83      /** Simple constructor.
84       * @param field field to which the time and state vector elements belong
85       * @param forward integration direction indicator
86       * @param yDotK slopes at the intermediate points
87       * @param globalPreviousState start of the global step
88       * @param globalCurrentState end of the global step
89       * @param softPreviousState start of the restricted step
90       * @param softCurrentState end of the restricted step
91       * @param mapper equations mapper for the all equations
92       */
93      LutherFieldStepInterpolator(final Field<T> field, final boolean forward,
94                                  final T[][] yDotK,
95                                  final FieldODEStateAndDerivative<T> globalPreviousState,
96                                  final FieldODEStateAndDerivative<T> globalCurrentState,
97                                  final FieldODEStateAndDerivative<T> softPreviousState,
98                                  final FieldODEStateAndDerivative<T> softCurrentState,
99                                  final FieldEquationsMapper<T> mapper) {
100         super(field, forward, yDotK,
101               globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
102               mapper);
103         final T q = field.getZero().add(21).sqrt();
104         c5a = q.multiply(  -49).add(  -49);
105         c5b = q.multiply(  287).add(  392);
106         c5c = q.multiply( -357).add( -637);
107         c5d = q.multiply(  343).add(  833);
108         c6a = q.multiply(   49).add(  -49);
109         c6b = q.multiply( -287).add(  392);
110         c6c = q.multiply(  357).add( -637);
111         c6d = q.multiply( -343).add(  833);
112         d5a = q.multiply(   49).add(   49);
113         d5b = q.multiply( -847).add(-1372);
114         d5c = q.multiply( 1029).add( 2254);
115         d6a = q.multiply(  -49).add(   49);
116         d6b = q.multiply(  847).add(-1372);
117         d6c = q.multiply(-1029).add( 2254);
118     }
119 
120     /** {@inheritDoc} */
121     @Override
122     protected LutherFieldStepInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
123                                                     final FieldODEStateAndDerivative<T> newGlobalPreviousState,
124                                                     final FieldODEStateAndDerivative<T> newGlobalCurrentState,
125                                                     final FieldODEStateAndDerivative<T> newSoftPreviousState,
126                                                     final FieldODEStateAndDerivative<T> newSoftCurrentState,
127                                                     final FieldEquationsMapper<T> newMapper) {
128         return new LutherFieldStepInterpolator<>(newField, newForward, newYDotK,
129                                                   newGlobalPreviousState, newGlobalCurrentState,
130                                                   newSoftPreviousState, newSoftCurrentState,
131                                                   newMapper);
132     }
133 
134     /** {@inheritDoc} */
135     @SuppressWarnings("unchecked")
136     @Override
137     protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
138                                                                                    final T time, final T theta,
139                                                                                    final T thetaH, final T oneMinusThetaH) {
140 
141         // the coefficients below have been computed by solving the
142         // order conditions from a theorem from Butcher (1963), using
143         // the method explained in Folkmar Bornemann paper "Runge-Kutta
144         // Methods, Trees, and Maple", Center of Mathematical Sciences, Munich
145         // University of Technology, February 9, 2001
146         //<http://wwwzenger.informatik.tu-muenchen.de/selcuk/sjam012101.html>
147 
148         // the method is implemented in the rkcheck tool
149         // <https://www.spaceroots.org/software/rkcheck/index.html>.
150         // Running it for order 5 gives the following order conditions
151         // for an interpolator:
152         // order 1 conditions
153         // \sum_{i=1}^{i=s}\left(b_{i} \right) =1
154         // order 2 conditions
155         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}\right) = \frac{\theta}{2}
156         // order 3 conditions
157         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{2}}{6}
158         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{2}\right) = \frac{\theta^{2}}{3}
159         // order 4 conditions
160         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{3}}{24}
161         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{3}}{12}
162         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{3}}{8}
163         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{3}\right) = \frac{\theta^{3}}{4}
164         // order 5 conditions
165         // \sum_{i=4}^{i=s}\left(b_{i} \sum_{j=3}^{j=i-1}{\left(a_{i,j} \sum_{k=2}^{k=j-1}{\left(a_{j,k} \sum_{l=1}^{l=k-1}{\left(a_{k,l} c_{l} \right)} \right)} \right)}\right) = \frac{\theta^{4}}{120}
166         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k}^{2} \right)} \right)}\right) = \frac{\theta^{4}}{60}
167         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} c_{j}\sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{40}
168         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{3} \right)}\right) = \frac{\theta^{4}}{20}
169         // \sum_{i=3}^{i=s}\left(b_{i} c_{i}\sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{30}
170         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{4}}{15}
171         // \sum_{i=2}^{i=s}\left(b_{i} \left(\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)} \right)^{2}\right) = \frac{\theta^{4}}{20}
172         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}^{2}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{4}}{10}
173         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{4}\right) = \frac{\theta^{4}}{5}
174 
175         // The a_{j,k} and c_{k} are given by the integrator Butcher arrays. What remains to solve
176         // are the b_i for the interpolator. They are found by solving the above equations.
177         // For a given interpolator, some equations are redundant, so in our case when we select
178         // all equations from order 1 to 4, we still don't have enough independent equations
179         // to solve from b_1 to b_7. We need to also select one equation from order 5. Here,
180         // we selected the last equation. It appears this choice implied at least the last 3 equations
181         // are fulfilled, but some of the former ones are not, so the resulting interpolator is order 5.
182         // At the end, we get the b_i as polynomials in theta.
183 
184         final T coeffDot1 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply(   21        ).add( -47          )).add(   36         )).add( -54     /   5.0)).add(1);
185         final T coeffDot2 =  time.getField().getZero();
186         final T coeffDot3 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply(  112        ).add(-608    /  3.0)).add(  320   / 3.0 )).add(-208    /  15.0));
187         final T coeffDot4 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply( -567  /  5.0).add( 972    /  5.0)).add( -486   / 5.0 )).add( 324    /  25.0));
188         final T coeffDot5 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply(c5a.divide(5)).add(c5b.divide(15))).add(c5c.divide(30))).add(c5d.divide(150)));
189         final T coeffDot6 =  theta.multiply(theta.multiply(theta.multiply(theta.multiply(c6a.divide(5)).add(c6b.divide(15))).add(c6c.divide(30))).add(c6d.divide(150)));
190         final T coeffDot7 =  theta.multiply(theta.multiply(theta.multiply(                                             3.0 ).add(   -3         )).add(   3   /   5.0));
191         final T[] interpolatedState;
192         final T[] interpolatedDerivatives;
193 
194         if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
195 
196             final T s         = thetaH;
197             final T coeff1    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(  21    /  5.0).add( -47    /  4.0)).add(   12         )).add( -27    /   5.0)).add(1));
198             final T coeff2    = time.getField().getZero();
199             final T coeff3    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( 112    /  5.0).add(-152    /  3.0)).add(  320   / 9.0 )).add(-104    /  15.0)));
200             final T coeff4    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(-567    / 25.0).add( 243    /  5.0)).add( -162   / 5.0 )).add( 162    /  25.0)));
201             final T coeff5    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(c5a.divide(25)).add(c5b.divide(60))).add(c5c.divide(90))).add(c5d.divide(300))));
202             final T coeff6    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(c6a.divide(25)).add(c6b.divide(60))).add(c6c.divide(90))).add(c6d.divide(300))));
203             final T coeff7    = s.multiply(theta.multiply(theta.multiply(theta.multiply(                                      3    /  4.0 ).add(   -1         )).add(   3    /  10.0)));
204             interpolatedState       = previousStateLinearCombination(coeff1, coeff2, coeff3, coeff4, coeff5, coeff6, coeff7);
205             interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
206         } else {
207 
208             final T s         = oneMinusThetaH;
209             final T coeff1    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( -21   /   5.0).add(   151  /  20.0)).add( -89   /   20.0)).add(  19 /  20.0)).add(- 1 / 20.0));
210             final T coeff2    = time.getField().getZero();
211             final T coeff3    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(-112   /   5.0).add(   424  /  15.0)).add( -328  /   45.0)).add( -16 /  45.0)).add(-16 /  45.0));
212             final T coeff4    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply( 567   /  25.0).add(  -648  /  25.0)).add(  162  /   25.0))));
213             final T coeff5    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(d5a.divide(25)).add(d5b.divide(300))).add(d5c.divide(900))).add( -49 / 180.0)).add(-49 / 180.0));
214             final T coeff6    = s.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(d6a.divide(25)).add(d6b.divide(300))).add(d6c.divide(900))).add( -49 / 180.0)).add(-49 / 180.0));
215             final T coeff7    = s.multiply(               theta.multiply(theta.multiply(theta.multiply(                        -3  /   4.0 ).add(   1   /    4.0)).add(  -1 /  20.0)).add( -1 /  20.0));
216             interpolatedState       = currentStateLinearCombination(coeff1, coeff2, coeff3, coeff4, coeff5, coeff6, coeff7);
217             interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
218         }
219 
220         return new FieldODEStateAndDerivative<>(time, interpolatedState, interpolatedDerivatives);
221     }
222 }