1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 package org.apache.commons.math4.legacy.ode.nonstiff; 19 20 import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator; 21 import org.apache.commons.math4.core.jdkmath.JdkMath; 22 23 /** 24 * This class represents an interpolator over the last step during an 25 * ODE integration for the 6th order Luther integrator. 26 * 27 * <p>This interpolator computes dense output inside the last 28 * step computed. The interpolation equation is consistent with the 29 * integration scheme.</p> 30 * 31 * @see LutherIntegrator 32 * @since 3.3 33 */ 34 35 class LutherStepInterpolator extends RungeKuttaStepInterpolator { 36 37 /** Serializable version identifier. */ 38 private static final long serialVersionUID = 20140416L; 39 40 /** Square root. */ 41 private static final double Q = JdkMath.sqrt(21); 42 43 /** Simple constructor. 44 * This constructor builds an instance that is not usable yet, the 45 * {@link 46 * org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator#reinitialize} 47 * method should be called before using the instance in order to 48 * initialize the internal arrays. This constructor is used only 49 * in order to delay the initialization in some cases. The {@link 50 * RungeKuttaIntegrator} class uses the prototyping design pattern 51 * to create the step interpolators by cloning an uninitialized model 52 * and later initializing the copy. 53 */ 54 // CHECKSTYLE: stop RedundantModifier 55 // the public modifier here is needed for serialization 56 public LutherStepInterpolator() { 57 } 58 // CHECKSTYLE: resume RedundantModifier 59 60 /** Copy constructor. 61 * @param interpolator interpolator to copy from. The copy is a deep 62 * copy: its arrays are separated from the original arrays of the 63 * instance 64 */ 65 LutherStepInterpolator(final LutherStepInterpolator interpolator) { 66 super(interpolator); 67 } 68 69 /** {@inheritDoc} */ 70 @Override 71 protected StepInterpolator doCopy() { 72 return new LutherStepInterpolator(this); 73 } 74 75 76 /** {@inheritDoc} */ 77 @Override 78 protected void computeInterpolatedStateAndDerivatives(final double theta, 79 final double oneMinusThetaH) { 80 81 // the coefficients below have been computed by solving the 82 // order conditions from a theorem from Butcher (1963), using 83 // the method explained in Folkmar Bornemann paper "Runge-Kutta 84 // Methods, Trees, and Maple", Center of Mathematical Sciences, Munich 85 // University of Technology, February 9, 2001 86 //<http://wwwzenger.informatik.tu-muenchen.de/selcuk/sjam012101.html> 87 88 // the method is implemented in the rkcheck tool 89 // <https://www.spaceroots.org/software/rkcheck/index.html>. 90 // Running it for order 5 gives the following order conditions 91 // for an interpolator: 92 // order 1 conditions 93 // \sum_{i=1}^{i=s}\left(b_{i} \right) =1 94 // order 2 conditions 95 // \sum_{i=1}^{i=s}\left(b_{i} c_{i}\right) = \frac{\theta}{2} 96 // order 3 conditions 97 // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{2}}{6} 98 // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{2}\right) = \frac{\theta^{2}}{3} 99 // order 4 conditions 100 // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{3}}{24} 101 // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{3}}{12} 102 // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{3}}{8} 103 // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{3}\right) = \frac{\theta^{3}}{4} 104 // order 5 conditions 105 // \sum_{i=4}^{i=s}\left(b_{i} \sum_{j=3}^{j=i-1}{\left(a_{i,j} \sum_{k=2}^{k=j-1}{\left(a_{j,k} \sum_{l=1}^{l=k-1}{\left(a_{k,l} c_{l} \right)} \right)} \right)}\right) = \frac{\theta^{4}}{120} 106 // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k}^{2} \right)} \right)}\right) = \frac{\theta^{4}}{60} 107 // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} c_{j}\sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{40} 108 // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{3} \right)}\right) = \frac{\theta^{4}}{20} 109 // \sum_{i=3}^{i=s}\left(b_{i} c_{i}\sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{30} 110 // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{4}}{15} 111 // \sum_{i=2}^{i=s}\left(b_{i} \left(\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)} \right)^{2}\right) = \frac{\theta^{4}}{20} 112 // \sum_{i=2}^{i=s}\left(b_{i} c_{i}^{2}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{4}}{10} 113 // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{4}\right) = \frac{\theta^{4}}{5} 114 115 // The a_{j,k} and c_{k} are given by the integrator Butcher arrays. What remains to solve 116 // are the b_i for the interpolator. They are found by solving the above equations. 117 // For a given interpolator, some equations are redundant, so in our case when we select 118 // all equations from order 1 to 4, we still don't have enough independent equations 119 // to solve from b_1 to b_7. We need to also select one equation from order 5. Here, 120 // we selected the last equation. It appears this choice implied at least the last 3 equations 121 // are fulfilled, but some of the former ones are not, so the resulting interpolator is order 5. 122 // At the end, we get the b_i as polynomials in theta. 123 124 final double coeffDot1 = 1 + theta * ( -54 / 5.0 + theta * ( 36 + theta * ( -47 + theta * 21))); 125 final double coeffDot2 = 0; 126 final double coeffDot3 = theta * (-208 / 15.0 + theta * ( 320 / 3.0 + theta * (-608 / 3.0 + theta * 112))); 127 final double coeffDot4 = theta * ( 324 / 25.0 + theta * ( -486 / 5.0 + theta * ( 972 / 5.0 + theta * -567 / 5.0))); 128 final double coeffDot5 = theta * ((833 + 343 * Q) / 150.0 + theta * ((-637 - 357 * Q) / 30.0 + theta * ((392 + 287 * Q) / 15.0 + theta * (-49 - 49 * Q) / 5.0))); 129 final double coeffDot6 = theta * ((833 - 343 * Q) / 150.0 + theta * ((-637 + 357 * Q) / 30.0 + theta * ((392 - 287 * Q) / 15.0 + theta * (-49 + 49 * Q) / 5.0))); 130 final double coeffDot7 = theta * ( 3 / 5.0 + theta * ( -3 + theta * 3)); 131 132 if (previousState != null && theta <= 0.5) { 133 134 final double coeff1 = 1 + theta * ( -27 / 5.0 + theta * ( 12 + theta * ( -47 / 4.0 + theta * 21 / 5.0))); 135 final double coeff2 = 0; 136 final double coeff3 = theta * (-104 / 15.0 + theta * ( 320 / 9.0 + theta * (-152 / 3.0 + theta * 112 / 5.0))); 137 final double coeff4 = theta * ( 162 / 25.0 + theta * ( -162 / 5.0 + theta * ( 243 / 5.0 + theta * -567 / 25.0))); 138 final double coeff5 = theta * ((833 + 343 * Q) / 300.0 + theta * ((-637 - 357 * Q) / 90.0 + theta * ((392 + 287 * Q) / 60.0 + theta * (-49 - 49 * Q) / 25.0))); 139 final double coeff6 = theta * ((833 - 343 * Q) / 300.0 + theta * ((-637 + 357 * Q) / 90.0 + theta * ((392 - 287 * Q) / 60.0 + theta * (-49 + 49 * Q) / 25.0))); 140 final double coeff7 = theta * ( 3 / 10.0 + theta * ( -1 + theta * ( 3 / 4.0))); 141 for (int i = 0; i < interpolatedState.length; ++i) { 142 final double yDot1 = yDotK[0][i]; 143 final double yDot2 = yDotK[1][i]; 144 final double yDot3 = yDotK[2][i]; 145 final double yDot4 = yDotK[3][i]; 146 final double yDot5 = yDotK[4][i]; 147 final double yDot6 = yDotK[5][i]; 148 final double yDot7 = yDotK[6][i]; 149 interpolatedState[i] = previousState[i] + 150 theta * h * (coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 + 151 coeff4 * yDot4 + coeff5 * yDot5 + coeff6 * yDot6 + coeff7 * yDot7); 152 interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + 153 coeffDot4 * yDot4 + coeffDot5 * yDot5 + coeffDot6 * yDot6 + coeffDot7 * yDot7; 154 } 155 } else { 156 157 final double coeff1 = -1 / 20.0 + theta * ( 19 / 20.0 + theta * ( -89 / 20.0 + theta * ( 151 / 20.0 + theta * -21 / 5.0))); 158 final double coeff2 = 0; 159 final double coeff3 = -16 / 45.0 + theta * ( -16 / 45.0 + theta * ( -328 / 45.0 + theta * ( 424 / 15.0 + theta * -112 / 5.0))); 160 final double coeff4 = theta * ( theta * ( 162 / 25.0 + theta * ( -648 / 25.0 + theta * 567 / 25.0))); 161 final double coeff5 = -49 / 180.0 + theta * ( -49 / 180.0 + theta * ((2254 + 1029 * Q) / 900.0 + theta * ((-1372 - 847 * Q) / 300.0 + theta * ( 49 + 49 * Q) / 25.0))); 162 final double coeff6 = -49 / 180.0 + theta * ( -49 / 180.0 + theta * ((2254 - 1029 * Q) / 900.0 + theta * ((-1372 + 847 * Q) / 300.0 + theta * ( 49 - 49 * Q) / 25.0))); 163 final double coeff7 = -1 / 20.0 + theta * ( -1 / 20.0 + theta * ( 1 / 4.0 + theta * ( -3 / 4.0))); 164 for (int i = 0; i < interpolatedState.length; ++i) { 165 final double yDot1 = yDotK[0][i]; 166 final double yDot2 = yDotK[1][i]; 167 final double yDot3 = yDotK[2][i]; 168 final double yDot4 = yDotK[3][i]; 169 final double yDot5 = yDotK[4][i]; 170 final double yDot6 = yDotK[5][i]; 171 final double yDot7 = yDotK[6][i]; 172 interpolatedState[i] = currentState[i] + 173 oneMinusThetaH * (coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 + 174 coeff4 * yDot4 + coeff5 * yDot5 + coeff6 * yDot6 + coeff7 * yDot7); 175 interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + 176 coeffDot4 * yDot4 + coeffDot5 * yDot5 + coeffDot6 * yDot6 + coeffDot7 * yDot7; 177 } 178 } 179 } 180 }