View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator;
21  import org.apache.commons.math4.core.jdkmath.JdkMath;
22  
23  /**
24   * This class represents an interpolator over the last step during an
25   * ODE integration for the 6th order Luther integrator.
26   *
27   * <p>This interpolator computes dense output inside the last
28   * step computed. The interpolation equation is consistent with the
29   * integration scheme.</p>
30   *
31   * @see LutherIntegrator
32   * @since 3.3
33   */
34  
35  class LutherStepInterpolator extends RungeKuttaStepInterpolator {
36  
37      /** Serializable version identifier. */
38      private static final long serialVersionUID = 20140416L;
39  
40      /** Square root. */
41      private static final double Q = JdkMath.sqrt(21);
42  
43      /** Simple constructor.
44       * This constructor builds an instance that is not usable yet, the
45       * {@link
46       * org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator#reinitialize}
47       * method should be called before using the instance in order to
48       * initialize the internal arrays. This constructor is used only
49       * in order to delay the initialization in some cases. The {@link
50       * RungeKuttaIntegrator} class uses the prototyping design pattern
51       * to create the step interpolators by cloning an uninitialized model
52       * and later initializing the copy.
53       */
54      // CHECKSTYLE: stop RedundantModifier
55      // the public modifier here is needed for serialization
56      public LutherStepInterpolator() {
57      }
58      // CHECKSTYLE: resume RedundantModifier
59  
60      /** Copy constructor.
61       * @param interpolator interpolator to copy from. The copy is a deep
62       * copy: its arrays are separated from the original arrays of the
63       * instance
64       */
65      LutherStepInterpolator(final LutherStepInterpolator interpolator) {
66          super(interpolator);
67      }
68  
69      /** {@inheritDoc} */
70      @Override
71      protected StepInterpolator doCopy() {
72          return new LutherStepInterpolator(this);
73      }
74  
75  
76      /** {@inheritDoc} */
77      @Override
78      protected void computeInterpolatedStateAndDerivatives(final double theta,
79                                                            final double oneMinusThetaH) {
80  
81          // the coefficients below have been computed by solving the
82          // order conditions from a theorem from Butcher (1963), using
83          // the method explained in Folkmar Bornemann paper "Runge-Kutta
84          // Methods, Trees, and Maple", Center of Mathematical Sciences, Munich
85          // University of Technology, February 9, 2001
86          //<http://wwwzenger.informatik.tu-muenchen.de/selcuk/sjam012101.html>
87  
88          // the method is implemented in the rkcheck tool
89          // <https://www.spaceroots.org/software/rkcheck/index.html>.
90          // Running it for order 5 gives the following order conditions
91          // for an interpolator:
92          // order 1 conditions
93          // \sum_{i=1}^{i=s}\left(b_{i} \right) =1
94          // order 2 conditions
95          // \sum_{i=1}^{i=s}\left(b_{i} c_{i}\right) = \frac{\theta}{2}
96          // order 3 conditions
97          // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{2}}{6}
98          // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{2}\right) = \frac{\theta^{2}}{3}
99          // order 4 conditions
100         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{3}}{24}
101         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{3}}{12}
102         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{3}}{8}
103         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{3}\right) = \frac{\theta^{3}}{4}
104         // order 5 conditions
105         // \sum_{i=4}^{i=s}\left(b_{i} \sum_{j=3}^{j=i-1}{\left(a_{i,j} \sum_{k=2}^{k=j-1}{\left(a_{j,k} \sum_{l=1}^{l=k-1}{\left(a_{k,l} c_{l} \right)} \right)} \right)}\right) = \frac{\theta^{4}}{120}
106         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k}^{2} \right)} \right)}\right) = \frac{\theta^{4}}{60}
107         // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} c_{j}\sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{40}
108         // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{3} \right)}\right) = \frac{\theta^{4}}{20}
109         // \sum_{i=3}^{i=s}\left(b_{i} c_{i}\sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{30}
110         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{4}}{15}
111         // \sum_{i=2}^{i=s}\left(b_{i} \left(\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)} \right)^{2}\right) = \frac{\theta^{4}}{20}
112         // \sum_{i=2}^{i=s}\left(b_{i} c_{i}^{2}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{4}}{10}
113         // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{4}\right) = \frac{\theta^{4}}{5}
114 
115         // The a_{j,k} and c_{k} are given by the integrator Butcher arrays. What remains to solve
116         // are the b_i for the interpolator. They are found by solving the above equations.
117         // For a given interpolator, some equations are redundant, so in our case when we select
118         // all equations from order 1 to 4, we still don't have enough independent equations
119         // to solve from b_1 to b_7. We need to also select one equation from order 5. Here,
120         // we selected the last equation. It appears this choice implied at least the last 3 equations
121         // are fulfilled, but some of the former ones are not, so the resulting interpolator is order 5.
122         // At the end, we get the b_i as polynomials in theta.
123 
124         final double coeffDot1 =  1 + theta * ( -54            /   5.0 + theta * (   36                   + theta * ( -47                   + theta *   21)));
125         final double coeffDot2 =  0;
126         final double coeffDot3 =      theta * (-208            /  15.0 + theta * (  320            / 3.0  + theta * (-608            /  3.0 + theta *  112)));
127         final double coeffDot4 =      theta * ( 324            /  25.0 + theta * ( -486            / 5.0  + theta * ( 972            /  5.0 + theta * -567           /  5.0)));
128         final double coeffDot5 =      theta * ((833 + 343 * Q) / 150.0 + theta * ((-637 - 357 * Q) / 30.0 + theta * ((392 + 287 * Q) / 15.0 + theta * (-49 - 49 * Q) /  5.0)));
129         final double coeffDot6 =      theta * ((833 - 343 * Q) / 150.0 + theta * ((-637 + 357 * Q) / 30.0 + theta * ((392 - 287 * Q) / 15.0 + theta * (-49 + 49 * Q) /  5.0)));
130         final double coeffDot7 =      theta * (   3            /   5.0 + theta * (   -3                   + theta *     3));
131 
132         if (previousState != null && theta <= 0.5) {
133 
134             final double coeff1    =  1 + theta * ( -27            /   5.0 + theta * (   12                   + theta * ( -47            /  4.0 + theta *   21           /  5.0)));
135             final double coeff2    =  0;
136             final double coeff3    =      theta * (-104            /  15.0 + theta * (  320            / 9.0  + theta * (-152            /  3.0 + theta *  112           /  5.0)));
137             final double coeff4    =      theta * ( 162            /  25.0 + theta * ( -162            / 5.0  + theta * ( 243            /  5.0 + theta * -567           / 25.0)));
138             final double coeff5    =      theta * ((833 + 343 * Q) / 300.0 + theta * ((-637 - 357 * Q) / 90.0 + theta * ((392 + 287 * Q) / 60.0 + theta * (-49 - 49 * Q) / 25.0)));
139             final double coeff6    =      theta * ((833 - 343 * Q) / 300.0 + theta * ((-637 + 357 * Q) / 90.0 + theta * ((392 - 287 * Q) / 60.0 + theta * (-49 + 49 * Q) / 25.0)));
140             final double coeff7    =      theta * (   3            /  10.0 + theta * (   -1                   + theta * (   3            /  4.0)));
141             for (int i = 0; i < interpolatedState.length; ++i) {
142                 final double yDot1 = yDotK[0][i];
143                 final double yDot2 = yDotK[1][i];
144                 final double yDot3 = yDotK[2][i];
145                 final double yDot4 = yDotK[3][i];
146                 final double yDot5 = yDotK[4][i];
147                 final double yDot6 = yDotK[5][i];
148                 final double yDot7 = yDotK[6][i];
149                 interpolatedState[i] = previousState[i] +
150                         theta * h * (coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 +
151                                      coeff4 * yDot4 + coeff5 * yDot5 + coeff6 * yDot6 + coeff7 * yDot7);
152                 interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 +
153                         coeffDot4 * yDot4 + coeffDot5 * yDot5 + coeffDot6 * yDot6 + coeffDot7 * yDot7;
154             }
155         } else {
156 
157             final double coeff1    =  -1 /  20.0 + theta * (  19            /  20.0 + theta * (  -89             /  20.0  + theta * (   151            /  20.0 + theta *  -21           /   5.0)));
158             final double coeff2    =  0;
159             final double coeff3    = -16 /  45.0 + theta * ( -16            /  45.0 + theta * ( -328             /  45.0  + theta * (   424            /  15.0 + theta * -112           /   5.0)));
160             final double coeff4    =               theta * (                          theta * (  162             /  25.0  + theta * (  -648            /  25.0 + theta *  567           /  25.0)));
161             final double coeff5    = -49 / 180.0 + theta * ( -49            / 180.0 + theta * ((2254 + 1029 * Q) / 900.0  + theta * ((-1372 - 847 * Q) / 300.0 + theta * ( 49 + 49 * Q) /  25.0)));
162             final double coeff6    = -49 / 180.0 + theta * ( -49            / 180.0 + theta * ((2254 - 1029 * Q) / 900.0  + theta * ((-1372 + 847 * Q) / 300.0 + theta * ( 49 - 49 * Q) /  25.0)));
163             final double coeff7    =  -1 /  20.0 + theta * (  -1            /  20.0 + theta * (    1             /   4.0  + theta * (    -3            /   4.0)));
164             for (int i = 0; i < interpolatedState.length; ++i) {
165                 final double yDot1 = yDotK[0][i];
166                 final double yDot2 = yDotK[1][i];
167                 final double yDot3 = yDotK[2][i];
168                 final double yDot4 = yDotK[3][i];
169                 final double yDot5 = yDotK[4][i];
170                 final double yDot6 = yDotK[5][i];
171                 final double yDot7 = yDotK[6][i];
172                 interpolatedState[i] = currentState[i] +
173                         oneMinusThetaH * (coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 +
174                                           coeff4 * yDot4 + coeff5 * yDot5 + coeff6 * yDot6 + coeff7 * yDot7);
175                 interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 +
176                         coeffDot4 * yDot4 + coeffDot5 * yDot5 + coeffDot6 * yDot6 + coeffDot7 * yDot7;
177             }
178         }
179     }
180 }