1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 package org.apache.commons.math4.legacy.ode.nonstiff; 19 20 import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator; 21 22 /** 23 * This class implements a step interpolator for second order 24 * Runge-Kutta integrator. 25 * 26 * <p>This interpolator computes dense output inside the last 27 * step computed. The interpolation equation is consistent with the 28 * integration scheme : 29 * <ul> 30 * <li>Using reference point at step start:<br> 31 * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub>) + θ h [(1 - θ) y'<sub>1</sub> + θ y'<sub>2</sub>] 32 * </li> 33 * <li>Using reference point at step end:<br> 34 * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub> + h) + (1-θ) h [θ y'<sub>1</sub> - (1+θ) y'<sub>2</sub>] 35 * </li> 36 * </ul> 37 * 38 * where θ belongs to [0 ; 1] and where y'<sub>1</sub> and y'<sub>2</sub> are the two 39 * evaluations of the derivatives already computed during the 40 * step. 41 * 42 * @see MidpointIntegrator 43 * @since 1.2 44 */ 45 46 class MidpointStepInterpolator 47 extends RungeKuttaStepInterpolator { 48 49 /** Serializable version identifier. */ 50 private static final long serialVersionUID = 20111120L; 51 52 /** Simple constructor. 53 * This constructor builds an instance that is not usable yet, the 54 * {@link 55 * org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator#reinitialize} 56 * method should be called before using the instance in order to 57 * initialize the internal arrays. This constructor is used only 58 * in order to delay the initialization in some cases. The {@link 59 * RungeKuttaIntegrator} class uses the prototyping design pattern 60 * to create the step interpolators by cloning an uninitialized model 61 * and later initializing the copy. 62 */ 63 // CHECKSTYLE: stop RedundantModifier 64 // the public modifier here is needed for serialization 65 public MidpointStepInterpolator() { 66 } 67 // CHECKSTYLE: resume RedundantModifier 68 69 /** Copy constructor. 70 * @param interpolator interpolator to copy from. The copy is a deep 71 * copy: its arrays are separated from the original arrays of the 72 * instance 73 */ 74 MidpointStepInterpolator(final MidpointStepInterpolator interpolator) { 75 super(interpolator); 76 } 77 78 /** {@inheritDoc} */ 79 @Override 80 protected StepInterpolator doCopy() { 81 return new MidpointStepInterpolator(this); 82 } 83 84 85 /** {@inheritDoc} */ 86 @Override 87 protected void computeInterpolatedStateAndDerivatives(final double theta, 88 final double oneMinusThetaH) { 89 90 final double coeffDot2 = 2 * theta; 91 final double coeffDot1 = 1 - coeffDot2; 92 93 if (previousState != null && theta <= 0.5) { 94 final double coeff1 = theta * oneMinusThetaH; 95 final double coeff2 = theta * theta * h; 96 for (int i = 0; i < interpolatedState.length; ++i) { 97 final double yDot1 = yDotK[0][i]; 98 final double yDot2 = yDotK[1][i]; 99 interpolatedState[i] = previousState[i] + coeff1 * yDot1 + coeff2 * yDot2; 100 interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2; 101 } 102 } else { 103 final double coeff1 = oneMinusThetaH * theta; 104 final double coeff2 = oneMinusThetaH * (1.0 + theta); 105 for (int i = 0; i < interpolatedState.length; ++i) { 106 final double yDot1 = yDotK[0][i]; 107 final double yDot2 = yDotK[1][i]; 108 interpolatedState[i] = currentState[i] + coeff1 * yDot1 - coeff2 * yDot2; 109 interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2; 110 } 111 } 112 } 113 }