View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.math4.legacy.ode.nonstiff;
19  
20  import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator;
21  
22  /**
23   * This class implements a step interpolator for second order
24   * Runge-Kutta integrator.
25   *
26   * <p>This interpolator computes dense output inside the last
27   * step computed. The interpolation equation is consistent with the
28   * integration scheme :
29   * <ul>
30   *   <li>Using reference point at step start:<br>
31   *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>) + &theta; h [(1 - &theta;) y'<sub>1</sub> + &theta; y'<sub>2</sub>]
32   *   </li>
33   *   <li>Using reference point at step end:<br>
34   *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h) + (1-&theta;) h [&theta; y'<sub>1</sub> - (1+&theta;) y'<sub>2</sub>]
35   *   </li>
36   * </ul>
37   *
38   * where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> and y'<sub>2</sub> are the two
39   * evaluations of the derivatives already computed during the
40   * step.
41   *
42   * @see MidpointIntegrator
43   * @since 1.2
44   */
45  
46  class MidpointStepInterpolator
47    extends RungeKuttaStepInterpolator {
48  
49    /** Serializable version identifier. */
50    private static final long serialVersionUID = 20111120L;
51  
52    /** Simple constructor.
53     * This constructor builds an instance that is not usable yet, the
54     * {@link
55     * org.apache.commons.math4.legacy.ode.sampling.AbstractStepInterpolator#reinitialize}
56     * method should be called before using the instance in order to
57     * initialize the internal arrays. This constructor is used only
58     * in order to delay the initialization in some cases. The {@link
59     * RungeKuttaIntegrator} class uses the prototyping design pattern
60     * to create the step interpolators by cloning an uninitialized model
61     * and later initializing the copy.
62     */
63    // CHECKSTYLE: stop RedundantModifier
64    // the public modifier here is needed for serialization
65    public MidpointStepInterpolator() {
66    }
67    // CHECKSTYLE: resume RedundantModifier
68  
69    /** Copy constructor.
70     * @param interpolator interpolator to copy from. The copy is a deep
71     * copy: its arrays are separated from the original arrays of the
72     * instance
73     */
74    MidpointStepInterpolator(final MidpointStepInterpolator interpolator) {
75      super(interpolator);
76    }
77  
78    /** {@inheritDoc} */
79    @Override
80    protected StepInterpolator doCopy() {
81      return new MidpointStepInterpolator(this);
82    }
83  
84  
85    /** {@inheritDoc} */
86    @Override
87    protected void computeInterpolatedStateAndDerivatives(final double theta,
88                                            final double oneMinusThetaH) {
89  
90      final double coeffDot2 = 2 * theta;
91      final double coeffDot1 = 1 - coeffDot2;
92  
93      if (previousState != null && theta <= 0.5) {
94          final double coeff1    = theta * oneMinusThetaH;
95          final double coeff2    = theta * theta * h;
96          for (int i = 0; i < interpolatedState.length; ++i) {
97              final double yDot1 = yDotK[0][i];
98              final double yDot2 = yDotK[1][i];
99              interpolatedState[i] = previousState[i] + coeff1 * yDot1 + coeff2 * yDot2;
100             interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2;
101         }
102     } else {
103         final double coeff1    = oneMinusThetaH * theta;
104         final double coeff2    = oneMinusThetaH * (1.0 + theta);
105         for (int i = 0; i < interpolatedState.length; ++i) {
106             final double yDot1 = yDotK[0][i];
107             final double yDot2 = yDotK[1][i];
108             interpolatedState[i] = currentState[i] + coeff1 * yDot1 - coeff2 * yDot2;
109             interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2;
110         }
111     }
112   }
113 }