1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.optim;
18
19 import java.util.function.Supplier;
20 import org.apache.commons.math4.legacy.exception.MathIllegalStateException;
21 import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
22 import org.apache.commons.math4.legacy.exception.TooManyEvaluationsException;
23
24 /**
25 * Base class multi-start optimizer for a multivariate function.
26 * <br>
27 * This class wraps an optimizer in order to use it several times in
28 * turn with different starting points (trying to avoid being trapped
29 * in a local extremum when looking for a global one).
30 * <em>It is not a "user" class.</em>
31 *
32 * @param <PAIR> Type of the point/value pair returned by the optimization
33 * algorithm.
34 *
35 * @since 3.0
36 */
37 public abstract class BaseMultiStartMultivariateOptimizer<PAIR>
38 extends BaseMultivariateOptimizer<PAIR> {
39 /** Underlying classical optimizer. */
40 private final BaseMultivariateOptimizer<PAIR> optimizer;
41 /** Number of evaluations already performed for all starts. */
42 private int totalEvaluations;
43 /** Number of starts to go. */
44 private final int starts;
45 /** Generator of start points ("multi-start"). */
46 private final Supplier<double[]> generator;
47 /** Optimization data. */
48 private OptimizationData[] optimData;
49 /**
50 * Location in {@link #optimData} where the updated maximum
51 * number of evaluations will be stored.
52 */
53 private int maxEvalIndex = -1;
54 /**
55 * Location in {@link #optimData} where the updated start value
56 * will be stored.
57 */
58 private int initialGuessIndex = -1;
59
60 /**
61 * Create a multi-start optimizer from a single-start optimizer.
62 * <p>
63 * Note that if there are bounds constraints (see {@link #getLowerBound()}
64 * and {@link #getUpperBound()}), then a simple rejection algorithm is used
65 * at each restart. This implies that the random vector generator should have
66 * a good probability to generate vectors in the bounded domain, otherwise the
67 * rejection algorithm will hit the {@link #getMaxEvaluations()} count without
68 * generating a proper restart point. Users must be take great care of the <a
69 * href="http://en.wikipedia.org/wiki/Curse_of_dimensionality">curse of dimensionality</a>.
70 * </p>
71 * @param optimizer Single-start optimizer to wrap.
72 * @param starts Number of starts to perform. If {@code starts == 1},
73 * the {@link #optimize(OptimizationData[]) optimize} will return the
74 * same solution as the given {@code optimizer} would return.
75 * @param generator Generator to use for restarts.
76 * @throws NotStrictlyPositiveException if {@code starts < 1}.
77 */
78 public BaseMultiStartMultivariateOptimizer(final BaseMultivariateOptimizer<PAIR> optimizer,
79 final int starts,
80 final Supplier<double[]> generator) {
81 super(optimizer.getConvergenceChecker());
82
83 if (starts < 1) {
84 throw new NotStrictlyPositiveException(starts);
85 }
86
87 this.optimizer = optimizer;
88 this.starts = starts;
89 this.generator = generator;
90 }
91
92 /** {@inheritDoc} */
93 @Override
94 public int getEvaluations() {
95 return totalEvaluations;
96 }
97
98 /**
99 * Gets all the optima found during the last call to {@code optimize}.
100 * The optimizer stores all the optima found during a set of
101 * restarts. The {@code optimize} method returns the best point only.
102 * This method returns all the points found at the end of each starts,
103 * including the best one already returned by the {@code optimize} method.
104 * <br>
105 * The returned array as one element for each start as specified
106 * in the constructor. It is ordered with the results from the
107 * runs that did converge first, sorted from best to worst
108 * objective value (i.e in ascending order if minimizing and in
109 * descending order if maximizing), followed by {@code null} elements
110 * corresponding to the runs that did not converge. This means all
111 * elements will be {@code null} if the {@code optimize} method did throw
112 * an exception.
113 * This also means that if the first element is not {@code null}, it is
114 * the best point found across all starts.
115 * <br>
116 * The behaviour is undefined if this method is called before
117 * {@code optimize}; it will likely throw {@code NullPointerException}.
118 *
119 * @return an array containing the optima sorted from best to worst.
120 */
121 public abstract PAIR[] getOptima();
122
123 /**
124 * {@inheritDoc}
125 *
126 * @throws MathIllegalStateException if {@code optData} does not contain an
127 * instance of {@link MaxEval} or {@link InitialGuess}.
128 */
129 @Override
130 public PAIR optimize(OptimizationData... optData) {
131 // Store arguments in order to pass them to the internal optimizer.
132 optimData = optData;
133 // Set up base class and perform computations.
134 return super.optimize(optData);
135 }
136
137 /** {@inheritDoc} */
138 @Override
139 protected PAIR doOptimize() {
140 // Remove all instances of "MaxEval" and "InitialGuess" from the
141 // array that will be passed to the internal optimizer.
142 // The former is to enforce smaller numbers of allowed evaluations
143 // (according to how many have been used up already), and the latter
144 // to impose a different start value for each start.
145 for (int i = 0; i < optimData.length; i++) {
146 if (optimData[i] instanceof MaxEval) {
147 optimData[i] = null;
148 maxEvalIndex = i;
149 }
150 if (optimData[i] instanceof InitialGuess) {
151 optimData[i] = null;
152 initialGuessIndex = i;
153 continue;
154 }
155 }
156 if (maxEvalIndex == -1) {
157 throw new MathIllegalStateException();
158 }
159 if (initialGuessIndex == -1) {
160 throw new MathIllegalStateException();
161 }
162
163 RuntimeException lastException = null;
164 totalEvaluations = 0;
165 clear();
166
167 final int maxEval = getMaxEvaluations();
168 final double[] min = getLowerBound();
169 final double[] max = getUpperBound();
170 final double[] startPoint = getStartPoint();
171
172 // Multi-start loop.
173 for (int i = 0; i < starts; i++) {
174 // CHECKSTYLE: stop IllegalCatch
175 try {
176 // Decrease number of allowed evaluations.
177 optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
178 // New start value.
179 double[] s = null;
180 if (i == 0) {
181 s = startPoint;
182 } else {
183 int attempts = 0;
184 while (s == null) {
185 if (attempts++ >= getMaxEvaluations()) {
186 throw new TooManyEvaluationsException(getMaxEvaluations());
187 }
188 s = generator.get();
189 for (int k = 0; s != null && k < s.length; ++k) {
190 if ((min != null && s[k] < min[k]) || (max != null && s[k] > max[k])) {
191 // reject the vector
192 s = null;
193 break;
194 }
195 }
196 }
197 }
198 optimData[initialGuessIndex] = new InitialGuess(s);
199 // Optimize.
200 final PAIR result = optimizer.optimize(optimData);
201 store(result);
202 } catch (RuntimeException mue) {
203 lastException = mue;
204 }
205 // CHECKSTYLE: resume IllegalCatch
206
207 totalEvaluations += optimizer.getEvaluations();
208 }
209
210 final PAIR[] optima = getOptima();
211 if (optima.length == 0) {
212 // All runs failed.
213 throw lastException; // Cannot be null if starts >= 1.
214 }
215
216 // Return the best optimum.
217 return optima[0];
218 }
219
220 /**
221 * Method that will be called in order to store each found optimum.
222 *
223 * @param optimum Result of an optimization run.
224 */
225 protected abstract void store(PAIR optimum);
226 /**
227 * Method that will called in order to clear all stored optima.
228 */
229 protected abstract void clear();
230 }