1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.math4.legacy.optim.univariate; 18 19 import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException; 20 import org.apache.commons.math4.legacy.optim.AbstractConvergenceChecker; 21 import org.apache.commons.math4.core.jdkmath.JdkMath; 22 23 /** 24 * Simple implementation of the 25 * {@link org.apache.commons.math4.legacy.optim.ConvergenceChecker} interface 26 * that uses only objective function values. 27 * 28 * Convergence is considered to have been reached if either the relative 29 * difference between the objective function values is smaller than a 30 * threshold or if either the absolute difference between the objective 31 * function values is smaller than another threshold. 32 * <br> 33 * The {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair) 34 * converged} method will also return {@code true} if the number of iterations 35 * has been set (see {@link #SimpleUnivariateValueChecker(double,double,int) 36 * this constructor}). 37 * 38 * @since 3.1 39 */ 40 public class SimpleUnivariateValueChecker 41 extends AbstractConvergenceChecker<UnivariatePointValuePair> { 42 /** 43 * If {@link #maxIterationCount} is set to this value, the number of 44 * iterations will never cause 45 * {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair)} 46 * to return {@code true}. 47 */ 48 private static final int ITERATION_CHECK_DISABLED = -1; 49 /** 50 * Number of iterations after which the 51 * {@link #converged(int,UnivariatePointValuePair,UnivariatePointValuePair)} 52 * method will return true (unless the check is disabled). 53 */ 54 private final int maxIterationCount; 55 56 /** Build an instance with specified thresholds. 57 * 58 * In order to perform only relative checks, the absolute tolerance 59 * must be set to a negative value. In order to perform only absolute 60 * checks, the relative tolerance must be set to a negative value. 61 * 62 * @param relativeThreshold relative tolerance threshold 63 * @param absoluteThreshold absolute tolerance threshold 64 */ 65 public SimpleUnivariateValueChecker(final double relativeThreshold, 66 final double absoluteThreshold) { 67 super(relativeThreshold, absoluteThreshold); 68 maxIterationCount = ITERATION_CHECK_DISABLED; 69 } 70 71 /** 72 * Builds an instance with specified thresholds. 73 * 74 * In order to perform only relative checks, the absolute tolerance 75 * must be set to a negative value. In order to perform only absolute 76 * checks, the relative tolerance must be set to a negative value. 77 * 78 * @param relativeThreshold relative tolerance threshold 79 * @param absoluteThreshold absolute tolerance threshold 80 * @param maxIter Maximum iteration count. 81 * @throws NotStrictlyPositiveException if {@code maxIter <= 0}. 82 * 83 * @since 3.1 84 */ 85 public SimpleUnivariateValueChecker(final double relativeThreshold, 86 final double absoluteThreshold, 87 final int maxIter) { 88 super(relativeThreshold, absoluteThreshold); 89 90 if (maxIter <= 0) { 91 throw new NotStrictlyPositiveException(maxIter); 92 } 93 maxIterationCount = maxIter; 94 } 95 96 /** 97 * Check if the optimization algorithm has converged considering the 98 * last two points. 99 * This method may be called several time from the same algorithm 100 * iteration with different points. This can be detected by checking the 101 * iteration number at each call if needed. Each time this method is 102 * called, the previous and current point correspond to points with the 103 * same role at each iteration, so they can be compared. As an example, 104 * simplex-based algorithms call this method for all points of the simplex, 105 * not only for the best or worst ones. 106 * 107 * @param iteration Index of current iteration 108 * @param previous Best point in the previous iteration. 109 * @param current Best point in the current iteration. 110 * @return {@code true} if the algorithm has converged. 111 */ 112 @Override 113 public boolean converged(final int iteration, 114 final UnivariatePointValuePair previous, 115 final UnivariatePointValuePair current) { 116 if (maxIterationCount != ITERATION_CHECK_DISABLED && iteration >= maxIterationCount) { 117 return true; 118 } 119 120 final double p = previous.getValue(); 121 final double c = current.getValue(); 122 final double difference = JdkMath.abs(p - c); 123 final double size = JdkMath.max(JdkMath.abs(p), JdkMath.abs(c)); 124 return difference <= size * getRelativeThreshold() || 125 difference <= getAbsoluteThreshold(); 126 } 127 }