1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.stat.inference;
18
19 import org.apache.commons.statistics.distribution.ChiSquaredDistribution;
20 import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
21 import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
22 import org.apache.commons.math4.legacy.exception.NotPositiveException;
23 import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
24 import org.apache.commons.math4.legacy.exception.OutOfRangeException;
25 import org.apache.commons.math4.legacy.exception.ZeroException;
26 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
27 import org.apache.commons.math4.core.jdkmath.JdkMath;
28 import org.apache.commons.math4.legacy.core.MathArrays;
29
30 /**
31 * Implements <a href="http://en.wikipedia.org/wiki/G-test">G Test</a>
32 * statistics.
33 *
34 * <p>This is known in statistical genetics as the McDonald-Kreitman test.
35 * The implementation handles both known and unknown distributions.</p>
36 *
37 * <p>Two samples tests can be used when the distribution is unknown <i>a priori</i>
38 * but provided by one sample, or when the hypothesis under test is that the two
39 * samples come from the same underlying distribution.</p>
40 *
41 * @since 3.1
42 */
43 public class GTest {
44
45 /**
46 * Computes the <a href="http://en.wikipedia.org/wiki/G-test">G statistic
47 * for Goodness of Fit</a> comparing {@code observed} and {@code expected}
48 * frequency counts.
49 *
50 * <p>This statistic can be used to perform a G test (Log-Likelihood Ratio
51 * Test) evaluating the null hypothesis that the observed counts follow the
52 * expected distribution.</p>
53 *
54 * <p><strong>Preconditions</strong>: <ul>
55 * <li>Expected counts must all be positive. </li>
56 * <li>Observed counts must all be ≥ 0. </li>
57 * <li>The observed and expected arrays must have the same length and their
58 * common length must be at least 2. </li></ul>
59 *
60 * <p>If any of the preconditions are not met, a
61 * {@code MathIllegalArgumentException} is thrown.</p>
62 *
63 * <p><strong>Note:</strong>This implementation rescales the
64 * {@code expected} array if necessary to ensure that the sum of the
65 * expected and observed counts are equal.</p>
66 *
67 * @param observed array of observed frequency counts
68 * @param expected array of expected frequency counts
69 * @return G-Test statistic
70 * @throws NotPositiveException if {@code observed} has negative entries
71 * @throws NotStrictlyPositiveException if {@code expected} has entries that
72 * are not strictly positive
73 * @throws DimensionMismatchException if the array lengths do not match or
74 * are less than 2.
75 */
76 public double g(final double[] expected, final long[] observed)
77 throws NotPositiveException, NotStrictlyPositiveException,
78 DimensionMismatchException {
79
80 if (expected.length < 2) {
81 throw new DimensionMismatchException(expected.length, 2);
82 }
83 if (expected.length != observed.length) {
84 throw new DimensionMismatchException(expected.length, observed.length);
85 }
86 MathArrays.checkPositive(expected);
87 MathArrays.checkNonNegative(observed);
88
89 double sumExpected = 0d;
90 double sumObserved = 0d;
91 for (int i = 0; i < observed.length; i++) {
92 sumExpected += expected[i];
93 sumObserved += observed[i];
94 }
95 double ratio = 1d;
96 boolean rescale = false;
97 if (JdkMath.abs(sumExpected - sumObserved) > 10E-6) {
98 ratio = sumObserved / sumExpected;
99 rescale = true;
100 }
101 double sum = 0d;
102 for (int i = 0; i < observed.length; i++) {
103 final double dev = rescale ?
104 JdkMath.log((double) observed[i] / (ratio * expected[i])) :
105 JdkMath.log((double) observed[i] / expected[i]);
106 sum += ((double) observed[i]) * dev;
107 }
108 return 2d * sum;
109 }
110
111 /**
112 * Returns the <i>observed significance level</i>, or <a href=
113 * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue"> p-value</a>,
114 * associated with a G-Test for goodness of fit comparing the
115 * {@code observed} frequency counts to those in the {@code expected} array.
116 *
117 * <p>The number returned is the smallest significance level at which one
118 * can reject the null hypothesis that the observed counts conform to the
119 * frequency distribution described by the expected counts.</p>
120 *
121 * <p>The probability returned is the tail probability beyond
122 * {@link #g(double[], long[]) g(expected, observed)}
123 * in the ChiSquare distribution with degrees of freedom one less than the
124 * common length of {@code expected} and {@code observed}.</p>
125 *
126 * <p> <strong>Preconditions</strong>: <ul>
127 * <li>Expected counts must all be positive. </li>
128 * <li>Observed counts must all be ≥ 0. </li>
129 * <li>The observed and expected arrays must have the
130 * same length and their common length must be at least 2.</li>
131 * </ul>
132 *
133 * <p>If any of the preconditions are not met, a
134 * {@code MathIllegalArgumentException} is thrown.</p>
135 *
136 * <p><strong>Note:</strong>This implementation rescales the
137 * {@code expected} array if necessary to ensure that the sum of the
138 * expected and observed counts are equal.</p>
139 *
140 * @param observed array of observed frequency counts
141 * @param expected array of expected frequency counts
142 * @return p-value
143 * @throws NotPositiveException if {@code observed} has negative entries
144 * @throws NotStrictlyPositiveException if {@code expected} has entries that
145 * are not strictly positive
146 * @throws DimensionMismatchException if the array lengths do not match or
147 * are less than 2.
148 * @throws MaxCountExceededException if an error occurs computing the
149 * p-value.
150 */
151 public double gTest(final double[] expected, final long[] observed)
152 throws NotPositiveException, NotStrictlyPositiveException,
153 DimensionMismatchException, MaxCountExceededException {
154
155 // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
156 final ChiSquaredDistribution distribution =
157 ChiSquaredDistribution.of(expected.length - 1.0);
158 return distribution.survivalProbability(g(expected, observed));
159 }
160
161 /**
162 * Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described
163 * in p64-69 of McDonald, J.H. 2009. Handbook of Biological Statistics
164 * (2nd ed.). Sparky House Publishing, Baltimore, Maryland.
165 *
166 * <p> The probability returned is the tail probability beyond
167 * {@link #g(double[], long[]) g(expected, observed)}
168 * in the ChiSquare distribution with degrees of freedom two less than the
169 * common length of {@code expected} and {@code observed}.</p>
170 *
171 * @param observed array of observed frequency counts
172 * @param expected array of expected frequency counts
173 * @return p-value
174 * @throws NotPositiveException if {@code observed} has negative entries
175 * @throws NotStrictlyPositiveException {@code expected} has entries that are
176 * not strictly positive
177 * @throws DimensionMismatchException if the array lengths do not match or
178 * are less than 2.
179 * @throws MaxCountExceededException if an error occurs computing the
180 * p-value.
181 */
182 public double gTestIntrinsic(final double[] expected, final long[] observed)
183 throws NotPositiveException, NotStrictlyPositiveException,
184 DimensionMismatchException, MaxCountExceededException {
185
186 // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
187 final ChiSquaredDistribution distribution =
188 ChiSquaredDistribution.of(expected.length - 2.0);
189 return distribution.survivalProbability(g(expected, observed));
190 }
191
192 /**
193 * Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit
194 * evaluating the null hypothesis that the observed counts conform to the
195 * frequency distribution described by the expected counts, with
196 * significance level {@code alpha}. Returns true iff the null
197 * hypothesis can be rejected with {@code 100 * (1 - alpha)} percent confidence.
198 *
199 * <p><strong>Example:</strong><br> To test the hypothesis that
200 * {@code observed} follows {@code expected} at the 99% level,
201 * use </p><p>
202 * {@code gTest(expected, observed, 0.01)}</p>
203 *
204 * <p>Returns true iff {@link #gTest(double[], long[])
205 * gTestGoodnessOfFitPValue(expected, observed)} < alpha</p>
206 *
207 * <p><strong>Preconditions</strong>: <ul>
208 * <li>Expected counts must all be positive. </li>
209 * <li>Observed counts must all be ≥ 0. </li>
210 * <li>The observed and expected arrays must have the same length and their
211 * common length must be at least 2.
212 * <li> {@code 0 < alpha < 0.5} </li></ul>
213 *
214 * <p>If any of the preconditions are not met, a
215 * {@code MathIllegalArgumentException} is thrown.</p>
216 *
217 * <p><strong>Note:</strong>This implementation rescales the
218 * {@code expected} array if necessary to ensure that the sum of the
219 * expected and observed counts are equal.</p>
220 *
221 * @param observed array of observed frequency counts
222 * @param expected array of expected frequency counts
223 * @param alpha significance level of the test
224 * @return true iff null hypothesis can be rejected with confidence 1 -
225 * alpha
226 * @throws NotPositiveException if {@code observed} has negative entries
227 * @throws NotStrictlyPositiveException if {@code expected} has entries that
228 * are not strictly positive
229 * @throws DimensionMismatchException if the array lengths do not match or
230 * are less than 2.
231 * @throws MaxCountExceededException if an error occurs computing the
232 * p-value.
233 * @throws OutOfRangeException if alpha is not strictly greater than zero
234 * and less than or equal to 0.5
235 */
236 public boolean gTest(final double[] expected, final long[] observed,
237 final double alpha)
238 throws NotPositiveException, NotStrictlyPositiveException,
239 DimensionMismatchException, OutOfRangeException, MaxCountExceededException {
240
241 if (alpha <= 0 || alpha > 0.5) {
242 throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL,
243 alpha, 0, 0.5);
244 }
245 return gTest(expected, observed) < alpha;
246 }
247
248 /**
249 * Calculates the <a href=
250 * "http://en.wikipedia.org/wiki/Entropy_%28information_theory%29">Shannon
251 * entropy</a> for 2 Dimensional Matrix. The value returned is the entropy
252 * of the vector formed by concatenating the rows (or columns) of {@code k}
253 * to form a vector. See {@link #entropy(long[])}.
254 *
255 * @param k 2 Dimensional Matrix of long values (for ex. the counts of a
256 * trials)
257 * @return Shannon Entropy of the given Matrix
258 *
259 */
260 private double entropy(final long[][] k) {
261 double h = 0d;
262 double sumK = 0d;
263 for (int i = 0; i < k.length; i++) {
264 for (int j = 0; j < k[i].length; j++) {
265 sumK += (double) k[i][j];
266 }
267 }
268 for (int i = 0; i < k.length; i++) {
269 for (int j = 0; j < k[i].length; j++) {
270 if (k[i][j] != 0) {
271 final double pIJ = (double) k[i][j] / sumK;
272 h += pIJ * JdkMath.log(pIJ);
273 }
274 }
275 }
276 return -h;
277 }
278
279 /**
280 * Calculates the <a href="http://en.wikipedia.org/wiki/Entropy_%28information_theory%29">
281 * Shannon entropy</a> for a vector. The values of {@code k} are taken to be
282 * incidence counts of the values of a random variable. What is returned is <br>
283 * ∑p<sub>i</sub>log(p<sub>i</sub><br>
284 * where p<sub>i</sub> = k[i] / (sum of elements in k)
285 *
286 * @param k Vector (for ex. Row Sums of a trials)
287 * @return Shannon Entropy of the given Vector
288 *
289 */
290 private double entropy(final long[] k) {
291 double h = 0d;
292 double sumK = 0d;
293 for (int i = 0; i < k.length; i++) {
294 sumK += (double) k[i];
295 }
296 for (int i = 0; i < k.length; i++) {
297 if (k[i] != 0) {
298 final double pI = (double) k[i] / sumK;
299 h += pI * JdkMath.log(pI);
300 }
301 }
302 return -h;
303 }
304
305 /**
306 * <p>Computes a G (Log-Likelihood Ratio) two sample test statistic for
307 * independence comparing frequency counts in
308 * {@code observed1} and {@code observed2}. The sums of frequency
309 * counts in the two samples are not required to be the same. The formula
310 * used to compute the test statistic is </p>
311 *
312 * <p>{@code 2 * totalSum * [H(rowSums) + H(colSums) - H(k)]}</p>
313 *
314 * <p> where {@code H} is the
315 * <a href="http://en.wikipedia.org/wiki/Entropy_%28information_theory%29">
316 * Shannon Entropy</a> of the random variable formed by viewing the elements
317 * of the argument array as incidence counts; <br>
318 * {@code k} is a matrix with rows {@code [observed1, observed2]}; <br>
319 * {@code rowSums, colSums} are the row/col sums of {@code k}; <br>
320 * and {@code totalSum} is the overall sum of all entries in {@code k}.</p>
321 *
322 * <p>This statistic can be used to perform a G test evaluating the null
323 * hypothesis that both observed counts are independent </p>
324 *
325 * <p> <strong>Preconditions</strong>: <ul>
326 * <li>Observed counts must be non-negative. </li>
327 * <li>Observed counts for a specific bin must not both be zero. </li>
328 * <li>Observed counts for a specific sample must not all be 0. </li>
329 * <li>The arrays {@code observed1} and {@code observed2} must have
330 * the same length and their common length must be at least 2. </li></ul>
331 *
332 * <p>If any of the preconditions are not met, a
333 * {@code MathIllegalArgumentException} is thrown.</p>
334 *
335 * @param observed1 array of observed frequency counts of the first data set
336 * @param observed2 array of observed frequency counts of the second data
337 * set
338 * @return G-Test statistic
339 * @throws DimensionMismatchException the lengths of the arrays do not
340 * match or their common length is less than 2
341 * @throws NotPositiveException if any entry in {@code observed1} or
342 * {@code observed2} is negative
343 * @throws ZeroException if either all counts of
344 * {@code observed1} or {@code observed2} are zero, or if the count
345 * at the same index is zero for both arrays.
346 */
347 public double gDataSetsComparison(final long[] observed1, final long[] observed2)
348 throws DimensionMismatchException, NotPositiveException, ZeroException {
349
350 // Make sure lengths are same
351 if (observed1.length < 2) {
352 throw new DimensionMismatchException(observed1.length, 2);
353 }
354 if (observed1.length != observed2.length) {
355 throw new DimensionMismatchException(observed1.length, observed2.length);
356 }
357
358 // Ensure non-negative counts
359 MathArrays.checkNonNegative(observed1);
360 MathArrays.checkNonNegative(observed2);
361
362 // Compute and compare count sums
363 long countSum1 = 0;
364 long countSum2 = 0;
365
366 // Compute and compare count sums
367 final long[] collSums = new long[observed1.length];
368 final long[][] k = new long[2][observed1.length];
369
370 for (int i = 0; i < observed1.length; i++) {
371 if (observed1[i] == 0 && observed2[i] == 0) {
372 throw new ZeroException(LocalizedFormats.OBSERVED_COUNTS_BOTTH_ZERO_FOR_ENTRY, i);
373 } else {
374 countSum1 += observed1[i];
375 countSum2 += observed2[i];
376 collSums[i] = observed1[i] + observed2[i];
377 k[0][i] = observed1[i];
378 k[1][i] = observed2[i];
379 }
380 }
381 // Ensure neither sample is uniformly 0
382 if (countSum1 == 0 || countSum2 == 0) {
383 throw new ZeroException();
384 }
385 final long[] rowSums = {countSum1, countSum2};
386 final double sum = (double) countSum1 + (double) countSum2;
387 return 2 * sum * (entropy(rowSums) + entropy(collSums) - entropy(k));
388 }
389
390 /**
391 * Calculates the root log-likelihood ratio for 2 state Datasets. See
392 * {@link #gDataSetsComparison(long[], long[] )}.
393 *
394 * <p>Given two events A and B, let k11 be the number of times both events
395 * occur, k12 the incidence of B without A, k21 the count of A without B,
396 * and k22 the number of times neither A nor B occurs. What is returned
397 * by this method is </p>
398 *
399 * <p>{@code (sgn) sqrt(gValueDataSetsComparison({k11, k12}, {k21, k22})}</p>
400 *
401 * <p>where {@code sgn} is -1 if {@code k11 / (k11 + k12) < k21 / (k21 + k22))};<br>
402 * 1 otherwise.</p>
403 *
404 * <p>Signed root LLR has two advantages over the basic LLR: a) it is positive
405 * where k11 is bigger than expected, negative where it is lower b) if there is
406 * no difference it is asymptotically normally distributed. This allows one
407 * to talk about "number of standard deviations" which is a more common frame
408 * of reference than the chi^2 distribution.</p>
409 *
410 * @param k11 number of times the two events occurred together (AB)
411 * @param k12 number of times the second event occurred WITHOUT the
412 * first event (notA,B)
413 * @param k21 number of times the first event occurred WITHOUT the
414 * second event (A, notB)
415 * @param k22 number of times something else occurred (i.e. was neither
416 * of these events (notA, notB)
417 * @return root log-likelihood ratio
418 *
419 */
420 public double rootLogLikelihoodRatio(final long k11, long k12,
421 final long k21, final long k22) {
422 final double llr = gDataSetsComparison(
423 new long[]{k11, k12}, new long[]{k21, k22});
424 double sqrt = JdkMath.sqrt(llr);
425 if ((double) k11 / (k11 + k12) < (double) k21 / (k21 + k22)) {
426 sqrt = -sqrt;
427 }
428 return sqrt;
429 }
430
431 /**
432 * <p>Returns the <i>observed significance level</i>, or <a href=
433 * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
434 * p-value</a>, associated with a G-Value (Log-Likelihood Ratio) for two
435 * sample test comparing bin frequency counts in {@code observed1} and
436 * {@code observed2}.</p>
437 *
438 * <p>The number returned is the smallest significance level at which one
439 * can reject the null hypothesis that the observed counts conform to the
440 * same distribution. </p>
441 *
442 * <p>See {@link #gTest(double[], long[])} for details
443 * on how the p-value is computed. The degrees of of freedom used to
444 * perform the test is one less than the common length of the input observed
445 * count arrays.</p>
446 *
447 * <p><strong>Preconditions</strong>:
448 * <ul> <li>Observed counts must be non-negative. </li>
449 * <li>Observed counts for a specific bin must not both be zero. </li>
450 * <li>Observed counts for a specific sample must not all be 0. </li>
451 * <li>The arrays {@code observed1} and {@code observed2} must
452 * have the same length and their common length must be at least 2. </li>
453 * </ul>
454 * <p> If any of the preconditions are not met, a
455 * {@code MathIllegalArgumentException} is thrown.</p>
456 *
457 * @param observed1 array of observed frequency counts of the first data set
458 * @param observed2 array of observed frequency counts of the second data
459 * set
460 * @return p-value
461 * @throws DimensionMismatchException the length of the arrays does not
462 * match or their common length is less than 2
463 * @throws NotPositiveException if any of the entries in {@code observed1} or
464 * {@code observed2} are negative
465 * @throws ZeroException if either all counts of {@code observed1} or
466 * {@code observed2} are zero, or if the count at some index is
467 * zero for both arrays
468 * @throws MaxCountExceededException if an error occurs computing the
469 * p-value.
470 */
471 public double gTestDataSetsComparison(final long[] observed1,
472 final long[] observed2)
473 throws DimensionMismatchException, NotPositiveException, ZeroException,
474 MaxCountExceededException {
475
476 // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
477 final ChiSquaredDistribution distribution =
478 ChiSquaredDistribution.of((double) observed1.length - 1);
479 return distribution.survivalProbability(
480 gDataSetsComparison(observed1, observed2));
481 }
482
483 /**
484 * <p>Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned
485 * data sets. The test evaluates the null hypothesis that the two lists
486 * of observed counts conform to the same frequency distribution, with
487 * significance level {@code alpha}. Returns true iff the null
488 * hypothesis can be rejected with 100 * (1 - alpha) percent confidence.
489 * </p>
490 * <p>See {@link #gDataSetsComparison(long[], long[])} for details
491 * on the formula used to compute the G (LLR) statistic used in the test and
492 * {@link #gTest(double[], long[])} for information on how
493 * the observed significance level is computed. The degrees of of freedom used
494 * to perform the test is one less than the common length of the input observed
495 * count arrays. </p>
496 *
497 * <strong>Preconditions</strong>: <ul>
498 * <li>Observed counts must be non-negative. </li>
499 * <li>Observed counts for a specific bin must not both be zero. </li>
500 * <li>Observed counts for a specific sample must not all be 0. </li>
501 * <li>The arrays {@code observed1} and {@code observed2} must
502 * have the same length and their common length must be at least 2. </li>
503 * <li>{@code 0 < alpha < 0.5} </li></ul>
504 *
505 * <p>If any of the preconditions are not met, a
506 * {@code MathIllegalArgumentException} is thrown.</p>
507 *
508 * @param observed1 array of observed frequency counts of the first data set
509 * @param observed2 array of observed frequency counts of the second data
510 * set
511 * @param alpha significance level of the test
512 * @return true iff null hypothesis can be rejected with confidence 1 -
513 * alpha
514 * @throws DimensionMismatchException the length of the arrays does not
515 * match
516 * @throws NotPositiveException if any of the entries in {@code observed1} or
517 * {@code observed2} are negative
518 * @throws ZeroException if either all counts of {@code observed1} or
519 * {@code observed2} are zero, or if the count at some index is
520 * zero for both arrays
521 * @throws OutOfRangeException if {@code alpha} is not in the range
522 * (0, 0.5]
523 * @throws MaxCountExceededException if an error occurs performing the test
524 */
525 public boolean gTestDataSetsComparison(
526 final long[] observed1,
527 final long[] observed2,
528 final double alpha)
529 throws DimensionMismatchException, NotPositiveException,
530 ZeroException, OutOfRangeException, MaxCountExceededException {
531
532 if (alpha <= 0 || alpha > 0.5) {
533 throw new OutOfRangeException(
534 LocalizedFormats.OUT_OF_BOUND_SIGNIFICANCE_LEVEL, alpha, 0, 0.5);
535 }
536 return gTestDataSetsComparison(observed1, observed2) < alpha;
537 }
538 }