1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.math4.legacy.stat.inference; 18 19 import org.apache.commons.statistics.distribution.NormalDistribution; 20 import org.apache.commons.math4.legacy.exception.ConvergenceException; 21 import org.apache.commons.math4.legacy.exception.MaxCountExceededException; 22 import org.apache.commons.math4.legacy.exception.NoDataException; 23 import org.apache.commons.math4.legacy.exception.NullArgumentException; 24 import org.apache.commons.math4.legacy.stat.ranking.NaNStrategy; 25 import org.apache.commons.math4.legacy.stat.ranking.NaturalRanking; 26 import org.apache.commons.math4.legacy.stat.ranking.TiesStrategy; 27 import org.apache.commons.math4.core.jdkmath.JdkMath; 28 29 import java.util.stream.IntStream; 30 31 /** 32 * An implementation of the Mann-Whitney U test (also called Wilcoxon rank-sum test). 33 * 34 */ 35 public class MannWhitneyUTest { 36 37 /** Ranking algorithm. */ 38 private NaturalRanking naturalRanking; 39 40 /** 41 * Create a test instance using where NaN's are left in place and ties get 42 * the average of applicable ranks. Use this unless you are very sure of 43 * what you are doing. 44 */ 45 public MannWhitneyUTest() { 46 naturalRanking = new NaturalRanking(NaNStrategy.FIXED, 47 TiesStrategy.AVERAGE); 48 } 49 50 /** 51 * Create a test instance using the given strategies for NaN's and ties. 52 * Only use this if you are sure of what you are doing. 53 * 54 * @param nanStrategy 55 * specifies the strategy that should be used for Double.NaN's 56 * @param tiesStrategy 57 * specifies the strategy that should be used for ties 58 */ 59 public MannWhitneyUTest(final NaNStrategy nanStrategy, 60 final TiesStrategy tiesStrategy) { 61 naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy); 62 } 63 64 /** 65 * Ensures that the provided arrays fulfills the assumptions. 66 * 67 * @param x first sample 68 * @param y second sample 69 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. 70 * @throws NoDataException if {@code x} or {@code y} are zero-length. 71 */ 72 private void ensureDataConformance(final double[] x, final double[] y) 73 throws NullArgumentException, NoDataException { 74 75 if (x == null || 76 y == null) { 77 throw new NullArgumentException(); 78 } 79 if (x.length == 0 || 80 y.length == 0) { 81 throw new NoDataException(); 82 } 83 } 84 85 /** Concatenate the samples into one array. 86 * @param x first sample 87 * @param y second sample 88 * @return concatenated array 89 */ 90 private double[] concatenateSamples(final double[] x, final double[] y) { 91 final double[] z = new double[x.length + y.length]; 92 93 System.arraycopy(x, 0, z, 0, x.length); 94 System.arraycopy(y, 0, z, x.length, y.length); 95 96 return z; 97 } 98 99 /** 100 * Computes the <a 101 * href="http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U"> Mann-Whitney 102 * U statistic</a> comparing mean for two independent samples possibly of 103 * different length. 104 * <p> 105 * This statistic can be used to perform a Mann-Whitney U test evaluating 106 * the null hypothesis that the two independent samples has equal mean. 107 * </p> 108 * <p> 109 * Let X<sub>i</sub> denote the i'th individual of the first sample and 110 * Y<sub>j</sub> the j'th individual in the second sample. Note that the 111 * samples would often have different length. 112 * </p> 113 * <p> 114 * <strong>Preconditions</strong>: 115 * <ul> 116 * <li>All observations in the two samples are independent.</li> 117 * <li>The observations are at least ordinal (continuous are also ordinal).</li> 118 * </ul> 119 * 120 * @param x the first sample 121 * @param y the second sample 122 * @return Mann-Whitney U statistic (minimum of U<sup>x</sup> and U<sup>y</sup>) 123 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. 124 * @throws NoDataException if {@code x} or {@code y} are zero-length. 125 */ 126 public double mannWhitneyU(final double[] x, final double[] y) 127 throws NullArgumentException, NoDataException { 128 129 ensureDataConformance(x, y); 130 131 final double[] z = concatenateSamples(x, y); 132 final double[] ranks = naturalRanking.rank(z); 133 134 double sumRankX = 0; 135 136 /* 137 * The ranks for x is in the first x.length entries in ranks because x 138 * is in the first x.length entries in z 139 */ 140 sumRankX = IntStream.range(0, x.length).mapToDouble(i -> ranks[i]).sum(); 141 142 /* 143 * U1 = R1 - (n1 * (n1 + 1)) / 2 where R1 is sum of ranks for sample 1, 144 * e.g. x, n1 is the number of observations in sample 1. 145 */ 146 final double u1 = sumRankX - ((long) x.length * (x.length + 1)) / 2; 147 148 /* 149 * It can be shown that U1 + U2 = n1 * n2 150 */ 151 final double u2 = (long) x.length * y.length - u1; 152 153 return JdkMath.min(u1, u2); 154 } 155 156 /** 157 * @param umin smallest Mann-Whitney U value 158 * @param n1 number of subjects in first sample 159 * @param n2 number of subjects in second sample 160 * @return two-sided asymptotic p-value 161 * @throws ConvergenceException if the p-value can not be computed 162 * due to a convergence error 163 * @throws MaxCountExceededException if the maximum number of 164 * iterations is exceeded 165 */ 166 private double calculateAsymptoticPValue(final double umin, 167 final int n1, 168 final int n2) 169 throws ConvergenceException, MaxCountExceededException { 170 171 /* long multiplication to avoid overflow (double not used due to efficiency 172 * and to avoid precision loss) 173 */ 174 final long n1n2prod = (long) n1 * n2; 175 176 // http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation 177 final double eU = n1n2prod / 2.0; 178 final double varU = n1n2prod * (n1 + n2 + 1) / 12.0; 179 180 final double z = (umin - eU) / JdkMath.sqrt(varU); 181 182 // No try-catch or advertised exception because args are valid 183 // pass a null rng to avoid unneeded overhead as we will not sample from this distribution 184 final NormalDistribution standardNormal = NormalDistribution.of(0, 1); 185 186 return 2 * standardNormal.cumulativeProbability(z); 187 } 188 189 /** 190 * Returns the asymptotic <i>observed significance level</i>, or <a href= 191 * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue"> 192 * p-value</a>, associated with a <a 193 * href="http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U"> Mann-Whitney 194 * U statistic</a> comparing mean for two independent samples. 195 * <p> 196 * Let X<sub>i</sub> denote the i'th individual of the first sample and 197 * Y<sub>j</sub> the j'th individual in the second sample. Note that the 198 * samples would often have different length. 199 * </p> 200 * <p> 201 * <strong>Preconditions</strong>: 202 * <ul> 203 * <li>All observations in the two samples are independent.</li> 204 * <li>The observations are at least ordinal (continuous are also ordinal).</li> 205 * </ul><p> 206 * Ties give rise to biased variance at the moment. See e.g. <a 207 * href="http://mlsc.lboro.ac.uk/resources/statistics/Mannwhitney.pdf" 208 * >http://mlsc.lboro.ac.uk/resources/statistics/Mannwhitney.pdf</a>.</p> 209 * 210 * @param x the first sample 211 * @param y the second sample 212 * @return asymptotic p-value 213 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}. 214 * @throws NoDataException if {@code x} or {@code y} are zero-length. 215 * @throws ConvergenceException if the p-value can not be computed due to a 216 * convergence error 217 * @throws MaxCountExceededException if the maximum number of iterations 218 * is exceeded 219 */ 220 public double mannWhitneyUTest(final double[] x, final double[] y) 221 throws NullArgumentException, NoDataException, 222 ConvergenceException, MaxCountExceededException { 223 224 ensureDataConformance(x, y); 225 226 final double uMin = mannWhitneyU(x, y); 227 228 return calculateAsymptoticPValue(uMin, x.length, y.length); 229 } 230 }