1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.stat.inference;
18
19 import org.apache.commons.statistics.distribution.NormalDistribution;
20 import org.apache.commons.math4.legacy.exception.ConvergenceException;
21 import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
22 import org.apache.commons.math4.legacy.exception.NoDataException;
23 import org.apache.commons.math4.legacy.exception.NullArgumentException;
24 import org.apache.commons.math4.legacy.stat.ranking.NaNStrategy;
25 import org.apache.commons.math4.legacy.stat.ranking.NaturalRanking;
26 import org.apache.commons.math4.legacy.stat.ranking.TiesStrategy;
27 import org.apache.commons.math4.core.jdkmath.JdkMath;
28
29 import java.util.stream.IntStream;
30
31 /**
32 * An implementation of the Mann-Whitney U test (also called Wilcoxon rank-sum test).
33 *
34 */
35 public class MannWhitneyUTest {
36
37 /** Ranking algorithm. */
38 private NaturalRanking naturalRanking;
39
40 /**
41 * Create a test instance using where NaN's are left in place and ties get
42 * the average of applicable ranks. Use this unless you are very sure of
43 * what you are doing.
44 */
45 public MannWhitneyUTest() {
46 naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
47 TiesStrategy.AVERAGE);
48 }
49
50 /**
51 * Create a test instance using the given strategies for NaN's and ties.
52 * Only use this if you are sure of what you are doing.
53 *
54 * @param nanStrategy
55 * specifies the strategy that should be used for Double.NaN's
56 * @param tiesStrategy
57 * specifies the strategy that should be used for ties
58 */
59 public MannWhitneyUTest(final NaNStrategy nanStrategy,
60 final TiesStrategy tiesStrategy) {
61 naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
62 }
63
64 /**
65 * Ensures that the provided arrays fulfills the assumptions.
66 *
67 * @param x first sample
68 * @param y second sample
69 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
70 * @throws NoDataException if {@code x} or {@code y} are zero-length.
71 */
72 private void ensureDataConformance(final double[] x, final double[] y)
73 throws NullArgumentException, NoDataException {
74
75 if (x == null ||
76 y == null) {
77 throw new NullArgumentException();
78 }
79 if (x.length == 0 ||
80 y.length == 0) {
81 throw new NoDataException();
82 }
83 }
84
85 /** Concatenate the samples into one array.
86 * @param x first sample
87 * @param y second sample
88 * @return concatenated array
89 */
90 private double[] concatenateSamples(final double[] x, final double[] y) {
91 final double[] z = new double[x.length + y.length];
92
93 System.arraycopy(x, 0, z, 0, x.length);
94 System.arraycopy(y, 0, z, x.length, y.length);
95
96 return z;
97 }
98
99 /**
100 * Computes the <a
101 * href="http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U"> Mann-Whitney
102 * U statistic</a> comparing mean for two independent samples possibly of
103 * different length.
104 * <p>
105 * This statistic can be used to perform a Mann-Whitney U test evaluating
106 * the null hypothesis that the two independent samples has equal mean.
107 * </p>
108 * <p>
109 * Let X<sub>i</sub> denote the i'th individual of the first sample and
110 * Y<sub>j</sub> the j'th individual in the second sample. Note that the
111 * samples would often have different length.
112 * </p>
113 * <p>
114 * <strong>Preconditions</strong>:
115 * <ul>
116 * <li>All observations in the two samples are independent.</li>
117 * <li>The observations are at least ordinal (continuous are also ordinal).</li>
118 * </ul>
119 *
120 * @param x the first sample
121 * @param y the second sample
122 * @return Mann-Whitney U statistic (minimum of U<sup>x</sup> and U<sup>y</sup>)
123 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
124 * @throws NoDataException if {@code x} or {@code y} are zero-length.
125 */
126 public double mannWhitneyU(final double[] x, final double[] y)
127 throws NullArgumentException, NoDataException {
128
129 ensureDataConformance(x, y);
130
131 final double[] z = concatenateSamples(x, y);
132 final double[] ranks = naturalRanking.rank(z);
133
134 double sumRankX = 0;
135
136 /*
137 * The ranks for x is in the first x.length entries in ranks because x
138 * is in the first x.length entries in z
139 */
140 sumRankX = IntStream.range(0, x.length).mapToDouble(i -> ranks[i]).sum();
141
142 /*
143 * U1 = R1 - (n1 * (n1 + 1)) / 2 where R1 is sum of ranks for sample 1,
144 * e.g. x, n1 is the number of observations in sample 1.
145 */
146 final double u1 = sumRankX - ((long) x.length * (x.length + 1)) / 2;
147
148 /*
149 * It can be shown that U1 + U2 = n1 * n2
150 */
151 final double u2 = (long) x.length * y.length - u1;
152
153 return JdkMath.min(u1, u2);
154 }
155
156 /**
157 * @param umin smallest Mann-Whitney U value
158 * @param n1 number of subjects in first sample
159 * @param n2 number of subjects in second sample
160 * @return two-sided asymptotic p-value
161 * @throws ConvergenceException if the p-value can not be computed
162 * due to a convergence error
163 * @throws MaxCountExceededException if the maximum number of
164 * iterations is exceeded
165 */
166 private double calculateAsymptoticPValue(final double umin,
167 final int n1,
168 final int n2)
169 throws ConvergenceException, MaxCountExceededException {
170
171 /* long multiplication to avoid overflow (double not used due to efficiency
172 * and to avoid precision loss)
173 */
174 final long n1n2prod = (long) n1 * n2;
175
176 // http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation
177 final double eU = n1n2prod / 2.0;
178 final double varU = n1n2prod * (n1 + n2 + 1) / 12.0;
179
180 final double z = (umin - eU) / JdkMath.sqrt(varU);
181
182 // No try-catch or advertised exception because args are valid
183 // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
184 final NormalDistribution standardNormal = NormalDistribution.of(0, 1);
185
186 return 2 * standardNormal.cumulativeProbability(z);
187 }
188
189 /**
190 * Returns the asymptotic <i>observed significance level</i>, or <a href=
191 * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
192 * p-value</a>, associated with a <a
193 * href="http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U"> Mann-Whitney
194 * U statistic</a> comparing mean for two independent samples.
195 * <p>
196 * Let X<sub>i</sub> denote the i'th individual of the first sample and
197 * Y<sub>j</sub> the j'th individual in the second sample. Note that the
198 * samples would often have different length.
199 * </p>
200 * <p>
201 * <strong>Preconditions</strong>:
202 * <ul>
203 * <li>All observations in the two samples are independent.</li>
204 * <li>The observations are at least ordinal (continuous are also ordinal).</li>
205 * </ul><p>
206 * Ties give rise to biased variance at the moment. See e.g. <a
207 * href="http://mlsc.lboro.ac.uk/resources/statistics/Mannwhitney.pdf"
208 * >http://mlsc.lboro.ac.uk/resources/statistics/Mannwhitney.pdf</a>.</p>
209 *
210 * @param x the first sample
211 * @param y the second sample
212 * @return asymptotic p-value
213 * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
214 * @throws NoDataException if {@code x} or {@code y} are zero-length.
215 * @throws ConvergenceException if the p-value can not be computed due to a
216 * convergence error
217 * @throws MaxCountExceededException if the maximum number of iterations
218 * is exceeded
219 */
220 public double mannWhitneyUTest(final double[] x, final double[] y)
221 throws NullArgumentException, NoDataException,
222 ConvergenceException, MaxCountExceededException {
223
224 ensureDataConformance(x, y);
225
226 final double uMin = mannWhitneyU(x, y);
227
228 return calculateAsymptoticPValue(uMin, x.length, y.length);
229 }
230 }