View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math4.legacy.stat.interval;
18  
19  import org.apache.commons.statistics.distribution.FDistribution;
20  
21  /**
22   * Implements the Clopper-Pearson method for creating a binomial proportion confidence interval.
23   *
24   * @see <a
25   *      href="http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Clopper-Pearson_interval">
26   *      Clopper-Pearson interval (Wikipedia)</a>
27   * @since 3.3
28   */
29  public class ClopperPearsonInterval implements BinomialConfidenceInterval {
30  
31      /** {@inheritDoc} */
32      @Override
33      public ConfidenceInterval createInterval(int numberOfTrials,
34                                               int numberOfSuccesses,
35                                               double confidenceLevel) {
36          IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel);
37          double lowerBound = 0;
38          double upperBound = 1;
39  
40          final double alpha = 0.5 * (1 - confidenceLevel);
41  
42          if (numberOfSuccesses > 0) {
43              final FDistribution distributionLowerBound = FDistribution.of(2.0 * (numberOfTrials - numberOfSuccesses + 1),
44                                                                            2.0 * numberOfSuccesses);
45              final double fValueLowerBound = distributionLowerBound.inverseSurvivalProbability(alpha);
46              lowerBound = numberOfSuccesses /
47                  (numberOfSuccesses + (numberOfTrials - numberOfSuccesses + 1) * fValueLowerBound);
48          }
49  
50          if (numberOfSuccesses < numberOfTrials) {
51              final FDistribution distributionUpperBound = FDistribution.of(2.0 * (numberOfSuccesses + 1),
52                                                                            2.0 * (numberOfTrials - numberOfSuccesses));
53              final double fValueUpperBound = distributionUpperBound.inverseSurvivalProbability(alpha);
54              upperBound = (numberOfSuccesses + 1) * fValueUpperBound /
55                  (numberOfTrials - numberOfSuccesses + (numberOfSuccesses + 1) * fValueUpperBound);
56          }
57  
58          return new ConfidenceInterval(lowerBound, upperBound, confidenceLevel);
59      }
60  }