View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math4.legacy.stat.regression;
18  
19  /**
20   * The multiple linear regression can be represented in matrix-notation.
21   * <pre>
22   *  y=X*b+u
23   * </pre>
24   * where y is an <code>n-vector</code> <b>regressand</b>, X is a <code>[n,k]</code> matrix whose <code>k</code> columns are called
25   * <b>regressors</b>, b is <code>k-vector</code> of <b>regression parameters</b> and <code>u</code> is an <code>n-vector</code>
26   * of <b>error terms</b> or <b>residuals</b>.
27   *
28   * The notation is quite standard in literature,
29   * cf eg <a href="http://www.econ.queensu.ca/ETM">Davidson and MacKinnon, Econometrics Theory and Methods, 2004</a>.
30   * @since 2.0
31   */
32  public interface MultipleLinearRegression {
33  
34      /**
35       * Estimates the regression parameters b.
36       *
37       * @return The [k,1] array representing b
38       */
39      double[] estimateRegressionParameters();
40  
41      /**
42       * Estimates the variance of the regression parameters, ie Var(b).
43       *
44       * @return The [k,k] array representing the variance of b
45       */
46      double[][] estimateRegressionParametersVariance();
47  
48      /**
49       * Estimates the residuals, ie u = y - X*b.
50       *
51       * @return The [n,1] array representing the residuals
52       */
53      double[] estimateResiduals();
54  
55      /**
56       * Returns the variance of the regressand, ie Var(y).
57       *
58       * @return The double representing the variance of y
59       */
60      double estimateRegressandVariance();
61  
62      /**
63       * Returns the standard errors of the regression parameters.
64       *
65       * @return standard errors of estimated regression parameters
66       */
67       double[] estimateRegressionParametersStandardErrors();
68  }