View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math4.legacy.stat.regression;
18  
19  import org.apache.commons.math4.legacy.exception.MathIllegalArgumentException;
20  import org.apache.commons.math4.legacy.exception.NoDataException;
21  
22  /**
23   * An interface for regression models allowing for dynamic updating of the data.
24   * That is, the entire data set need not be loaded into memory. As observations
25   * become available, they can be added to the regression  model and an updated
26   * estimate regression statistics can be calculated.
27   *
28   * @since 3.0
29   */
30  public interface UpdatingMultipleLinearRegression {
31  
32      /**
33       * Returns true if a constant has been included false otherwise.
34       *
35       * @return true if constant exists, false otherwise
36       */
37      boolean hasIntercept();
38  
39      /**
40       * Returns the number of observations added to the regression model.
41       *
42       * @return Number of observations
43       */
44      long getN();
45  
46      /**
47       * Adds one observation to the regression model.
48       *
49       * @param x the independent variables which form the design matrix
50       * @param y the dependent or response variable
51       * @throws ModelSpecificationException if the length of {@code x} does not equal
52       * the number of independent variables in the model
53       */
54      void addObservation(double[] x, double y) throws ModelSpecificationException;
55  
56      /**
57       * Adds a series of observations to the regression model. The lengths of
58       * x and y must be the same and x must be rectangular.
59       *
60       * @param x a series of observations on the independent variables
61       * @param y a series of observations on the dependent variable
62       * The length of x and y must be the same
63       * @throws ModelSpecificationException if {@code x} is not rectangular, does not match
64       * the length of {@code y} or does not contain sufficient data to estimate the model
65       */
66      void addObservations(double[][] x, double[] y) throws ModelSpecificationException;
67  
68      /**
69       * Clears internal buffers and resets the regression model. This means all
70       * data and derived values are initialized
71       */
72      void clear();
73  
74  
75      /**
76       * Performs a regression on data present in buffers and outputs a RegressionResults object.
77       * @return RegressionResults acts as a container of regression output
78       * @throws ModelSpecificationException if the model is not correctly specified
79       * @throws NoDataException if there is not sufficient data in the model to
80       * estimate the regression parameters
81       */
82      RegressionResults regress() throws ModelSpecificationException, NoDataException;
83  
84      /**
85       * Performs a regression on data present in buffers including only regressors.
86       * indexed in variablesToInclude and outputs a RegressionResults object
87       * @param variablesToInclude an array of indices of regressors to include
88       * @return RegressionResults acts as a container of regression output
89       * @throws ModelSpecificationException if the model is not correctly specified
90       * @throws MathIllegalArgumentException if the variablesToInclude array is null or zero length
91       */
92      RegressionResults regress(int[] variablesToInclude) throws ModelSpecificationException, MathIllegalArgumentException;
93  }