Uses of Class
org.apache.commons.math4.legacy.exception.MaxCountExceededException
-
Packages that use MaxCountExceededException Package Description org.apache.commons.math4.legacy.core Core math utilities.org.apache.commons.math4.legacy.exception Specialized exceptions for algorithms errors.org.apache.commons.math4.legacy.linear Linear algebra support.org.apache.commons.math4.legacy.ode This package provides classes to solve Ordinary Differential Equations problems.org.apache.commons.math4.legacy.ode.events This package provides classes to handle discrete events occurring during Ordinary Differential Equations integration.org.apache.commons.math4.legacy.ode.nonstiff This package provides classes to solve non-stiff Ordinary Differential Equations problems.org.apache.commons.math4.legacy.ode.sampling This package provides classes to handle sampling steps during Ordinary Differential Equations integration.org.apache.commons.math4.legacy.stat.inference Classes providing hypothesis testing. -
-
Uses of MaxCountExceededException in org.apache.commons.math4.legacy.core
Methods in org.apache.commons.math4.legacy.core that throw MaxCountExceededException Modifier and Type Method Description void
IntegerSequence.Incrementor. increment()
Adds the increment value to the current iteration count.void
IntegerSequence.Incrementor. increment(int nTimes)
Performs multiple increments.void
IntegerSequence.Incrementor.MaxCountExceededCallback. trigger(int maximalCount)
Function called when the maximal count has been reached. -
Uses of MaxCountExceededException in org.apache.commons.math4.legacy.exception
Subclasses of MaxCountExceededException in org.apache.commons.math4.legacy.exception Modifier and Type Class Description class
TooManyEvaluationsException
Exception to be thrown when the maximal number of evaluations is exceeded.class
TooManyIterationsException
Exception to be thrown when the maximal number of iterations is exceeded. -
Uses of MaxCountExceededException in org.apache.commons.math4.legacy.linear
Methods in org.apache.commons.math4.legacy.linear that throw MaxCountExceededException Modifier and Type Method Description RealVector
IterativeLinearSolver. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
IterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift)
Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b, boolean goodb, double shift)
Returns the solution to the system (A - shift · I) · x = b.RealVector
SymmLQ. solve(RealLinearOperator a, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
ConjugateGradient. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.abstract RealVector
IterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.abstract RealVector
PreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
PreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift)
Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVector
SymmLQ. solveInPlace(RealLinearOperator a, RealVector b, RealVector x)
Returns an estimate of the solution to the linear system A · x = b. -
Uses of MaxCountExceededException in org.apache.commons.math4.legacy.ode
Methods in org.apache.commons.math4.legacy.ode that throw MaxCountExceededException Modifier and Type Method Description protected FieldODEStateAndDerivative<T>
AbstractFieldIntegrator. acceptStep(AbstractFieldStepInterpolator<T> interpolator, T tEnd)
Accept a step, triggering events and step handlers.protected double
AbstractIntegrator. acceptStep(AbstractStepInterpolator interpolator, double[] y, double[] yDot, double tEnd)
Accept a step, triggering events and step handlers.void
ContinuousOutputFieldModel. append(ContinuousOutputFieldModel<T> model)
Append another model at the end of the instance.void
ContinuousOutputModel. append(ContinuousOutputModel model)
Append another model at the end of the instance.T[]
AbstractFieldIntegrator. computeDerivatives(T t, T[] y)
Compute the derivatives and check the number of evaluations.void
AbstractIntegrator. computeDerivatives(double t, double[] y, double[] yDot)
Compute the derivatives and check the number of evaluations.void
ExpandableStatefulODE. computeDerivatives(double t, double[] y, double[] yDot)
Get the current time derivative of the complete state vector.T[]
FieldExpandableODE. computeDerivatives(T t, T[] y)
Get the current time derivative of the complete state vector.T[]
FieldSecondaryEquations. computeDerivatives(T t, T[] primary, T[] primaryDot, T[] secondary)
Compute the derivatives related to the secondary state parameters.void
FirstOrderDifferentialEquations. computeDerivatives(double t, double[] y, double[] yDot)
Get the current time derivative of the state vector.void
SecondaryEquations. computeDerivatives(double t, double[] primary, double[] primaryDot, double[] secondary, double[] secondaryDot)
Compute the derivatives related to the secondary state parameters.void
MainStateJacobianProvider. computeMainStateJacobian(double t, double[] y, double[] yDot, double[][] dFdY)
Compute the jacobian matrix of ODE with respect to main state.void
ParameterJacobianProvider. computeParameterJacobian(double t, double[] y, double[] yDot, String paramName, double[] dFdP)
Compute the Jacobian matrix of ODE with respect to one parameter.double[]
ContinuousOutputModel. getInterpolatedDerivatives()
Get the derivatives of the state vector of the interpolated point.double[]
ContinuousOutputModel. getInterpolatedSecondaryDerivatives(int secondaryStateIndex)
Get the interpolated secondary derivatives corresponding to the secondary equations.double[]
ContinuousOutputModel. getInterpolatedSecondaryState(int secondaryStateIndex)
Get the interpolated secondary state corresponding to the secondary equations.double[]
ContinuousOutputModel. getInterpolatedState()
Get the state vector of the interpolated point.void
ContinuousOutputFieldModel. handleStep(FieldStepInterpolator<T> interpolator, boolean isLast)
Handle the last accepted step.void
ContinuousOutputModel. handleStep(StepInterpolator interpolator, boolean isLast)
Handle the last accepted step.abstract void
AbstractIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.double
AbstractIntegrator. integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
Integrate the differential equations up to the given time.FieldODEStateAndDerivative<T>
FirstOrderFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.double
FirstOrderIntegrator. integrate(FirstOrderDifferentialEquations equations, double t0, double[] y0, double t, double[] y)
Integrate the differential equations up to the given time.protected void
MultistepFieldIntegrator. start(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T t)
Start the integration.protected void
MultistepIntegrator. start(double t0, double[] y0, double t)
Start the integration. -
Uses of MaxCountExceededException in org.apache.commons.math4.legacy.ode.events
Methods in org.apache.commons.math4.legacy.ode.events that throw MaxCountExceededException Modifier and Type Method Description boolean
EventState. evaluateStep(StepInterpolator interpolator)
Evaluate the impact of the proposed step on the event handler.boolean
FieldEventState. evaluateStep(FieldStepInterpolator<T> interpolator)
Evaluate the impact of the proposed step on the event handler.void
EventState. reinitializeBegin(StepInterpolator interpolator)
Reinitialize the beginning of the step.void
FieldEventState. reinitializeBegin(FieldStepInterpolator<T> interpolator)
Reinitialize the beginning of the step. -
Uses of MaxCountExceededException in org.apache.commons.math4.legacy.ode.nonstiff
Methods in org.apache.commons.math4.legacy.ode.nonstiff that throw MaxCountExceededException Modifier and Type Method Description T
AdaptiveStepsizeFieldIntegrator. initializeStep(boolean forward, int order, T[] scale, FieldODEStateAndDerivative<T> state0, FieldEquationsMapper<T> mapper)
Initialize the integration step.double
AdaptiveStepsizeIntegrator. initializeStep(boolean forward, int order, double[] scale, double t0, double[] y0, double[] yDot0, double[] y1, double[] yDot1)
Initialize the integration step.FieldODEStateAndDerivative<T>
AdamsBashforthFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
AdamsBashforthIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.abstract FieldODEStateAndDerivative<T>
AdamsFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.abstract void
AdamsIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.FieldODEStateAndDerivative<T>
AdamsMoultonFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
AdamsMoultonIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.abstract void
AdaptiveStepsizeIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.FieldODEStateAndDerivative<T>
EmbeddedRungeKuttaFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
EmbeddedRungeKuttaIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.void
GraggBulirschStoerIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.FieldODEStateAndDerivative<T>
RungeKuttaFieldIntegrator. integrate(FieldExpandableODE<T> equations, FieldODEState<T> initialState, T finalTime)
Integrate the differential equations up to the given time.void
RungeKuttaIntegrator. integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time. -
Uses of MaxCountExceededException in org.apache.commons.math4.legacy.ode.sampling
Methods in org.apache.commons.math4.legacy.ode.sampling that throw MaxCountExceededException Modifier and Type Method Description protected abstract FieldODEStateAndDerivative<T>
AbstractFieldStepInterpolator. computeInterpolatedStateAndDerivatives(FieldEquationsMapper<T> equationsMapper, T time, T theta, T thetaH, T oneMinusThetaH)
Compute the state and derivatives at the interpolated time.protected abstract void
AbstractStepInterpolator. computeInterpolatedStateAndDerivatives(double theta, double oneMinusThetaH)
Compute the state and derivatives at the interpolated time.StepInterpolator
AbstractStepInterpolator. copy()
Copy the instance.StepInterpolator
StepInterpolator. copy()
Copy the instance.protected void
AbstractStepInterpolator. doFinalize()
Really finalize the step.void
AbstractStepInterpolator. finalizeStep()
Finalize the step.double[]
AbstractStepInterpolator. getInterpolatedDerivatives()
Get the derivatives of the state vector of the interpolated point.double[]
StepInterpolator. getInterpolatedDerivatives()
Get the derivatives of the state vector of the interpolated point.double[]
AbstractStepInterpolator. getInterpolatedSecondaryDerivatives(int index)
Get the interpolated secondary derivatives corresponding to the secondary equations.double[]
StepInterpolator. getInterpolatedSecondaryDerivatives(int index)
Get the interpolated secondary derivatives corresponding to the secondary equations.double[]
AbstractStepInterpolator. getInterpolatedSecondaryState(int index)
Get the interpolated secondary state corresponding to the secondary equations.double[]
StepInterpolator. getInterpolatedSecondaryState(int index)
Get the interpolated secondary state corresponding to the secondary equations.double[]
AbstractStepInterpolator. getInterpolatedState()
Get the state vector of the interpolated point.double[]
StepInterpolator. getInterpolatedState()
Get the state vector of the interpolated point.double[]
NordsieckStepInterpolator. getInterpolatedStateVariation()
Get the state vector variation from current to interpolated state.void
FieldStepHandler. handleStep(FieldStepInterpolator<T> interpolator, boolean isLast)
Handle the last accepted step.void
FieldStepNormalizer. handleStep(FieldStepInterpolator<T> interpolator, boolean isLast)
Handle the last accepted step.void
StepHandler. handleStep(StepInterpolator interpolator, boolean isLast)
Handle the last accepted step.void
StepNormalizer. handleStep(StepInterpolator interpolator, boolean isLast)
Handle the last accepted step. -
Uses of MaxCountExceededException in org.apache.commons.math4.legacy.stat.inference
Methods in org.apache.commons.math4.legacy.stat.inference that throw MaxCountExceededException Modifier and Type Method Description double
OneWayAnova. anovaPValue(Collection<double[]> categoryData)
Computes the ANOVA P-value for a collection ofdouble[]
arrays.double
OneWayAnova. anovaPValue(Collection<SummaryStatistics> categoryData, boolean allowOneElementData)
Computes the ANOVA P-value for a collection ofSummaryStatistics
.boolean
OneWayAnova. anovaTest(Collection<double[]> categoryData, double alpha)
Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.double
ChiSquareTest. chiSquareTest(double[] expected, long[] observed)
Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobserved
frequency counts to those in theexpected
array.boolean
ChiSquareTest. chiSquareTest(double[] expected, long[] observed, double alpha)
Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha
.double
ChiSquareTest. chiSquareTest(long[][] counts)
Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcounts
array, viewed as a two-way table.boolean
ChiSquareTest. chiSquareTest(long[][] counts, double alpha)
Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha
.static double
InferenceTestUtils. chiSquareTest(double[] expected, long[] observed)
static boolean
InferenceTestUtils. chiSquareTest(double[] expected, long[] observed, double alpha)
static double
InferenceTestUtils. chiSquareTest(long[][] counts)
static boolean
InferenceTestUtils. chiSquareTest(long[][] counts, double alpha)
double
ChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts inobserved1
andobserved2
.boolean
ChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
Performs a Chi-Square two sample test comparing two binned data sets.static double
InferenceTestUtils. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)
static boolean
InferenceTestUtils. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
double
GTest. gTest(double[] expected, long[] observed)
Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing theobserved
frequency counts to those in theexpected
array.boolean
GTest. gTest(double[] expected, long[] observed, double alpha)
Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha
.static double
InferenceTestUtils. gTest(double[] expected, long[] observed)
static boolean
InferenceTestUtils. gTest(double[] expected, long[] observed, double alpha)
double
GTest. gTestDataSetsComparison(long[] observed1, long[] observed2)
Returns the observed significance level, or p-value, associated with a G-Value (Log-Likelihood Ratio) for two sample test comparing bin frequency counts inobserved1
andobserved2
.boolean
GTest. gTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned data sets.static double
InferenceTestUtils. gTestDataSetsComparison(long[] observed1, long[] observed2)
static boolean
InferenceTestUtils. gTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)
double
GTest. gTestIntrinsic(double[] expected, long[] observed)
Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H.static double
InferenceTestUtils. gTestIntrinsic(double[] expected, long[] observed)
static double
InferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
static double
InferenceTestUtils. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
double
TTest. homoscedasticTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.boolean
TTest. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
, assuming that the subpopulation variances are equal.protected double
TTest. homoscedasticTTest(double m1, double m2, double v1, double v2, double n1, double n2)
Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.double
TTest. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.double
MannWhitneyUTest. mannWhitneyUTest(double[] x, double[] y)
Returns the asymptotic observed significance level, or p-value, associated with a Mann-Whitney U statistic comparing mean for two independent samples.static double
InferenceTestUtils. oneWayAnovaPValue(Collection<double[]> categoryData)
static boolean
InferenceTestUtils. oneWayAnovaTest(Collection<double[]> categoryData, double alpha)
static double
InferenceTestUtils. pairedTTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. pairedTTest(double[] sample1, double[] sample2, double alpha)
double
TTest. pairedTTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.boolean
TTest. pairedTTest(double[] sample1, double[] sample2, double alpha)
Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1
andsample2
is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha
.static double
InferenceTestUtils. tTest(double[] sample1, double[] sample2)
static boolean
InferenceTestUtils. tTest(double[] sample1, double[] sample2, double alpha)
static double
InferenceTestUtils. tTest(double mu, double[] sample)
static boolean
InferenceTestUtils. tTest(double mu, double[] sample, double alpha)
static double
InferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats)
static boolean
InferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats, double alpha)
static double
InferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
static boolean
InferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
double
TTest. tTest(double[] sample1, double[] sample2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.boolean
TTest. tTest(double[] sample1, double[] sample2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsample1
andsample2
are drawn from populations with the same mean, with significance levelalpha
.double
TTest. tTest(double mu, double[] sample)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu
.boolean
TTest. tTest(double mu, double[] sample, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsample
is drawn equalsmu
.protected double
TTest. tTest(double m, double mu, double v, double n)
Computes p-value for 2-sided, 1-sample t-test.protected double
TTest. tTest(double m1, double m2, double v1, double v2, double n1, double n2)
Computes p-value for 2-sided, 2-sample t-test.double
TTest. tTest(double mu, StatisticalSummary sampleStats)
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStats
with the constantmu
.boolean
TTest. tTest(double mu, StatisticalSummary sampleStats, double alpha)
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystats
is drawn equalsmu
.double
TTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.boolean
TTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1
andsampleStats2
describe datasets drawn from populations with the same mean, with significance levelalpha
.double
WilcoxonSignedRankTest. wilcoxonSignedRankTest(double[] x, double[] y, boolean exactPValue)
Returns the observed significance level, or p-value, associated with a Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample.
-