Uses of Class
org.apache.commons.math4.legacy.exception.NotPositiveException
-
Packages that use NotPositiveException Package Description org.apache.commons.math4.legacy.analysis.differentiation This package holds the main interfaces and basic building block classes dealing with differentiation.org.apache.commons.math4.legacy.analysis.interpolation Univariate real functions interpolation algorithms.org.apache.commons.math4.legacy.distribution Implementations of common discrete and continuous distributions.org.apache.commons.math4.legacy.genetics This package provides Genetic Algorithms components and implementations.org.apache.commons.math4.legacy.linear Linear algebra support.org.apache.commons.math4.legacy.stat.inference Classes providing hypothesis testing.org.apache.commons.math4.legacy.stat.interval Classes providing binomial proportion confidence interval construction. -
-
Uses of NotPositiveException in org.apache.commons.math4.legacy.analysis.differentiation
Constructors in org.apache.commons.math4.legacy.analysis.differentiation that throw NotPositiveException Constructor Description FiniteDifferencesDifferentiator(int nbPoints, double stepSize)Build a differentiator with number of points and step size when independent variable is unbounded.FiniteDifferencesDifferentiator(int nbPoints, double stepSize, double tLower, double tUpper)Build a differentiator with number of points and step size when independent variable is bounded. -
Uses of NotPositiveException in org.apache.commons.math4.legacy.analysis.interpolation
Constructors in org.apache.commons.math4.legacy.analysis.interpolation that throw NotPositiveException Constructor Description LoessInterpolator(double bandwidth, int robustnessIters, double accuracy)Construct a newLoessInterpolatorwith given bandwidth, number of robustness iterations and accuracy.MicrosphereProjectionInterpolator(InterpolatingMicrosphere microsphere, double exponent, boolean sharedSphere, double noInterpolationTolerance)Create a microsphere interpolator. -
Uses of NotPositiveException in org.apache.commons.math4.legacy.distribution
Constructors in org.apache.commons.math4.legacy.distribution that throw NotPositiveException Constructor Description EnumeratedDistribution(List<Pair<T,Double>> pmf)Create an enumerated distribution using the given random number generator and probability mass function enumeration.EnumeratedIntegerDistribution(int[] singletons, double[] probabilities)Create a discrete distribution.EnumeratedRealDistribution(double[] singletons, double[] probabilities)Create a discrete real-valued distribution using the given random number generator and probability mass function enumeration.MixtureMultivariateNormalDistribution(double[] weights, double[][] means, double[][][] covariances)Creates a multivariate normal mixture distribution.MixtureMultivariateNormalDistribution(List<Pair<Double,MultivariateNormalDistribution>> components)Creates a mixture model from a list of distributions and their associated weights. -
Uses of NotPositiveException in org.apache.commons.math4.legacy.genetics
Methods in org.apache.commons.math4.legacy.genetics that throw NotPositiveException Modifier and Type Method Description voidListPopulation. setPopulationLimit(int populationLimit)Sets the maximal population size.Constructors in org.apache.commons.math4.legacy.genetics that throw NotPositiveException Constructor Description ElitisticListPopulation(int populationLimit, double elitismRate)Creates a newElitisticListPopulationinstance and initializes its inner chromosome list.ElitisticListPopulation(List<Chromosome> chromosomes, int populationLimit, double elitismRate)Creates a newElitisticListPopulationinstance.ListPopulation(int populationLimit)Creates a new ListPopulation instance and initializes its inner chromosome list.ListPopulation(List<Chromosome> chromosomes, int populationLimit)Creates a new ListPopulation instance. -
Uses of NotPositiveException in org.apache.commons.math4.legacy.linear
Methods in org.apache.commons.math4.legacy.linear that throw NotPositiveException Modifier and Type Method Description FieldVector<T>ArrayFieldVector. getSubVector(int index, int n)Get a subvector from consecutive elements.RealVectorArrayRealVector. getSubVector(int index, int n)Get a subvector from consecutive elements.FieldVector<T>FieldVector. getSubVector(int index, int n)Get a subvector from consecutive elements.OpenMapRealVectorOpenMapRealVector. getSubVector(int index, int n)Get a subvector from consecutive elements.abstract RealVectorRealVector. getSubVector(int index, int n)Get a subvector from consecutive elements.FieldVector<T>SparseFieldVector. getSubVector(int index, int n)Get a subvector from consecutive elements.FieldMatrix<T>AbstractFieldMatrix. power(int p)Returns the result multiplying this with itselfptimes.RealMatrixAbstractRealMatrix. power(int p)Returns the result of multiplyingthiswith itselfptimes.FieldMatrix<T>FieldMatrix. power(int p)Returns the result multiplying this with itselfptimes.RealMatrixRealMatrix. power(int p)Returns the result of multiplyingthiswith itselfptimes. -
Uses of NotPositiveException in org.apache.commons.math4.legacy.stat.inference
Methods in org.apache.commons.math4.legacy.stat.inference that throw NotPositiveException Modifier and Type Method Description doubleChiSquareTest. chiSquare(double[] expected, long[] observed)doubleChiSquareTest. chiSquare(long[][] counts)Computes the Chi-Square statistic associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.static doubleInferenceTestUtils. chiSquare(double[] expected, long[] observed)static doubleInferenceTestUtils. chiSquare(long[][] counts)doubleChiSquareTest. chiSquareDataSetsComparison(long[] observed1, long[] observed2)Computes a Chi-Square two sample test statistic comparing bin frequency counts inobserved1andobserved2.static doubleInferenceTestUtils. chiSquareDataSetsComparison(long[] observed1, long[] observed2)doubleChiSquareTest. chiSquareTest(double[] expected, long[] observed)Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobservedfrequency counts to those in theexpectedarray.booleanChiSquareTest. chiSquareTest(double[] expected, long[] observed, double alpha)Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.doubleChiSquareTest. chiSquareTest(long[][] counts)Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.booleanChiSquareTest. chiSquareTest(long[][] counts, double alpha)Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha.static doubleInferenceTestUtils. chiSquareTest(double[] expected, long[] observed)static booleanInferenceTestUtils. chiSquareTest(double[] expected, long[] observed, double alpha)static doubleInferenceTestUtils. chiSquareTest(long[][] counts)static booleanInferenceTestUtils. chiSquareTest(long[][] counts, double alpha)doubleChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)Returns the observed significance level, or p-value, associated with a Chi-Square two sample test comparing bin frequency counts inobserved1andobserved2.booleanChiSquareTest. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)Performs a Chi-Square two sample test comparing two binned data sets.static doubleInferenceTestUtils. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2)static booleanInferenceTestUtils. chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)doubleGTest. g(double[] expected, long[] observed)static doubleInferenceTestUtils. g(double[] expected, long[] observed)doubleGTest. gDataSetsComparison(long[] observed1, long[] observed2)Computes a G (Log-Likelihood Ratio) two sample test statistic for independence comparing frequency counts inobserved1andobserved2.static doubleInferenceTestUtils. gDataSetsComparison(long[] observed1, long[] observed2)doubleGTest. gTest(double[] expected, long[] observed)Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing theobservedfrequency counts to those in theexpectedarray.booleanGTest. gTest(double[] expected, long[] observed, double alpha)Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha.static doubleInferenceTestUtils. gTest(double[] expected, long[] observed)static booleanInferenceTestUtils. gTest(double[] expected, long[] observed, double alpha)doubleGTest. gTestDataSetsComparison(long[] observed1, long[] observed2)Returns the observed significance level, or p-value, associated with a G-Value (Log-Likelihood Ratio) for two sample test comparing bin frequency counts inobserved1andobserved2.booleanGTest. gTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned data sets.static doubleInferenceTestUtils. gTestDataSetsComparison(long[] observed1, long[] observed2)static booleanInferenceTestUtils. gTestDataSetsComparison(long[] observed1, long[] observed2, double alpha)doubleGTest. gTestIntrinsic(double[] expected, long[] observed)Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H.static doubleInferenceTestUtils. gTestIntrinsic(double[] expected, long[] observed)static doubleInferenceTestUtils. rootLogLikelihoodRatio(long k11, long k12, long k21, long k22) -
Uses of NotPositiveException in org.apache.commons.math4.legacy.stat.interval
Methods in org.apache.commons.math4.legacy.stat.interval that throw NotPositiveException Modifier and Type Method Description ConfidenceIntervalBinomialConfidenceInterval. createInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel)Create a confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
-