Class SimplexSolver
- java.lang.Object
-
- org.apache.commons.math4.legacy.optim.BaseOptimizer<PAIR>
-
- org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer<PointValuePair>
-
- org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
-
- org.apache.commons.math4.legacy.optim.linear.LinearOptimizer
-
- org.apache.commons.math4.legacy.optim.linear.SimplexSolver
-
public class SimplexSolver extends LinearOptimizer
Solves a linear problem using the "Two-Phase Simplex" method.The
SimplexSolver
supports the followingOptimizationData
data provided as arguments tooptimize(OptimizationData...)
:- objective function:
LinearObjectiveFunction
- mandatory - linear constraints
LinearConstraintSet
- mandatory - type of optimization:
GoalType
- optional, default:MINIMIZE
- whether to allow negative values as solution:
NonNegativeConstraint
- optional, default: true - pivot selection rule:
PivotSelectionRule
- optional, defaultPivotSelectionRule.DANTZIG
- callback for the best solution:
SolutionCallback
- optional - maximum number of iterations:
MaxIter
- optional, default:Integer.MAX_VALUE
Note: Depending on the problem definition, the default convergence criteria may be too strict, resulting in
NoFeasibleSolutionException
orTooManyIterationsException
. In such a case it is advised to adjust these criteria with more appropriate values, e.g. relaxing the epsilon value.Default convergence criteria:
- Algorithm convergence: 1e-6
- Floating-point comparisons: 10 ulp
- Cut-Off value: 1e-10
The cut-off value has been introduced to handle the case of very small pivot elements in the Simplex tableau, as these may lead to numerical instabilities and degeneracy. Potential pivot elements smaller than this value will be treated as if they were zero and are thus not considered by the pivot selection mechanism. The default value is safe for many problems, but may need to be adjusted in case of very small coefficients used in either the
LinearConstraint
orLinearObjectiveFunction
.- Since:
- 2.0
- objective function:
-
-
Constructor Summary
Constructors Constructor Description SimplexSolver()
Builds a simplex solver with default settings.SimplexSolver(double epsilon)
Builds a simplex solver with a specified accepted amount of error.SimplexSolver(double epsilon, int maxUlps)
Builds a simplex solver with a specified accepted amount of error.SimplexSolver(double epsilon, int maxUlps, double cutOff)
Builds a simplex solver with a specified accepted amount of error.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected void
doIteration(org.apache.commons.math4.legacy.optim.linear.SimplexTableau tableau)
Runs one iteration of the Simplex method on the given model.PointValuePair
doOptimize()
Performs the bulk of the optimization algorithm.PointValuePair
optimize(OptimizationData... optData)
Stores data and performs the optimization.protected void
parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that characterize the problem.protected void
solvePhase1(org.apache.commons.math4.legacy.optim.linear.SimplexTableau tableau)
Solves Phase 1 of the Simplex method.-
Methods inherited from class org.apache.commons.math4.legacy.optim.linear.LinearOptimizer
getConstraints, getFunction, isRestrictedToNonNegative
-
Methods inherited from class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
computeObjectiveValue, getGoalType
-
Methods inherited from class org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
getLowerBound, getStartPoint, getUpperBound
-
Methods inherited from class org.apache.commons.math4.legacy.optim.BaseOptimizer
getConvergenceChecker, getEvaluations, getIterations, getMaxEvaluations, getMaxIterations, incrementEvaluationCount, incrementIterationCount, optimize
-
-
-
-
Constructor Detail
-
SimplexSolver
public SimplexSolver()
Builds a simplex solver with default settings.
-
SimplexSolver
public SimplexSolver(double epsilon)
Builds a simplex solver with a specified accepted amount of error.- Parameters:
epsilon
- Amount of error to accept for algorithm convergence.
-
SimplexSolver
public SimplexSolver(double epsilon, int maxUlps)
Builds a simplex solver with a specified accepted amount of error.- Parameters:
epsilon
- Amount of error to accept for algorithm convergence.maxUlps
- Amount of error to accept in floating point comparisons.
-
SimplexSolver
public SimplexSolver(double epsilon, int maxUlps, double cutOff)
Builds a simplex solver with a specified accepted amount of error.- Parameters:
epsilon
- Amount of error to accept for algorithm convergence.maxUlps
- Amount of error to accept in floating point comparisons.cutOff
- Values smaller than the cutOff are treated as zero.
-
-
Method Detail
-
optimize
public PointValuePair optimize(OptimizationData... optData) throws TooManyIterationsException
Stores data and performs the optimization.The list of parameters is open-ended so that sub-classes can extend it with arguments specific to their concrete implementations.
When the method is called multiple times, instance data is overwritten only when actually present in the list of arguments: when not specified, data set in a previous call is retained (and thus is optional in subsequent calls).
Important note: Subclasses must override
BaseOptimizer.parseOptimizationData(OptimizationData[])
if they need to register their own options; but then, they must also callsuper.parseOptimizationData(optData)
within that method.- Overrides:
optimize
in classLinearOptimizer
- Parameters:
optData
- Optimization data. In addition to those documented inLinearOptimizer
, this method will register the following data:- Returns:
- a point/value pair that satisfies the convergence criteria.
- Throws:
TooManyIterationsException
- if the maximal number of iterations is exceeded.DimensionMismatchException
- if the dimension of the constraints does not match the dimension of the objective function
-
parseOptimizationData
protected void parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that characterize the problem.- Overrides:
parseOptimizationData
in classLinearOptimizer
- Parameters:
optData
- Optimization data. In addition to those documented inLinearOptimizer
, this method will register the following data:
-
doIteration
protected void doIteration(org.apache.commons.math4.legacy.optim.linear.SimplexTableau tableau) throws TooManyIterationsException, UnboundedSolutionException
Runs one iteration of the Simplex method on the given model.- Parameters:
tableau
- Simple tableau for the problem.- Throws:
TooManyIterationsException
- if the allowed number of iterations has been exhausted.UnboundedSolutionException
- if the model is found not to have a bounded solution.
-
solvePhase1
protected void solvePhase1(org.apache.commons.math4.legacy.optim.linear.SimplexTableau tableau) throws TooManyIterationsException, UnboundedSolutionException, NoFeasibleSolutionException
Solves Phase 1 of the Simplex method.- Parameters:
tableau
- Simple tableau for the problem.- Throws:
TooManyIterationsException
- if the allowed number of iterations has been exhausted.UnboundedSolutionException
- if the model is found not to have a bounded solution.NoFeasibleSolutionException
- if there is no feasible solution?
-
doOptimize
public PointValuePair doOptimize() throws TooManyIterationsException, UnboundedSolutionException, NoFeasibleSolutionException
Performs the bulk of the optimization algorithm.- Specified by:
doOptimize
in classBaseOptimizer<PointValuePair>
- Returns:
- the point/value pair giving the optimal value of the objective function.
- Throws:
TooManyIterationsException
UnboundedSolutionException
NoFeasibleSolutionException
-
-