1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.linear;
18
19 import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
20 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
21 import org.apache.commons.math4.core.jdkmath.JdkMath;
22 import org.apache.commons.numbers.core.Precision;
23
24 /**
25 * Calculates the compact Singular Value Decomposition of a matrix.
26 * <p>
27 * The Singular Value Decomposition of matrix A is a set of three matrices: U,
28 * Σ and V such that A = U × Σ × V<sup>T</sup>. Let A be
29 * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a
30 * p × p diagonal matrix with positive or null elements, V is a p ×
31 * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where
32 * p=min(m,n).
33 * </p>
34 * <p>This class is similar to the class with similar name from the
35 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> library, with the
36 * following changes:</p>
37 * <ul>
38 * <li>the {@code norm2} method which has been renamed as {@link #getNorm()
39 * getNorm},</li>
40 * <li>the {@code cond} method which has been renamed as {@link
41 * #getConditionNumber() getConditionNumber},</li>
42 * <li>the {@code rank} method which has been renamed as {@link #getRank()
43 * getRank},</li>
44 * <li>a {@link #getUT() getUT} method has been added,</li>
45 * <li>a {@link #getVT() getVT} method has been added,</li>
46 * <li>a {@link #getSolver() getSolver} method has been added,</li>
47 * <li>a {@link #getCovariance(double) getCovariance} method has been added.</li>
48 * </ul>
49 * @see <a href="http://mathworld.wolfram.com/SingularValueDecomposition.html">MathWorld</a>
50 * @see <a href="http://en.wikipedia.org/wiki/Singular_value_decomposition">Wikipedia</a>
51 * @since 2.0 (changed to concrete class in 3.0)
52 */
53 public class SingularValueDecomposition {
54 /** Relative threshold for small singular values. */
55 private static final double EPS = 0x1.0p-52;
56 /** Absolute threshold for small singular values. */
57 private static final double TINY = 0x1.0p-966;
58 /** Computed singular values. */
59 private final double[] singularValues;
60 /** max(row dimension, column dimension). */
61 private final int m;
62 /** min(row dimension, column dimension). */
63 private final int n;
64 /** Indicator for transposed matrix. */
65 private final boolean transposed;
66 /** Cached value of U matrix. */
67 private final RealMatrix cachedU;
68 /** Cached value of transposed U matrix. */
69 private RealMatrix cachedUt;
70 /** Cached value of S (diagonal) matrix. */
71 private RealMatrix cachedS;
72 /** Cached value of V matrix. */
73 private final RealMatrix cachedV;
74 /** Cached value of transposed V matrix. */
75 private RealMatrix cachedVt;
76 /**
77 * Tolerance value for small singular values, calculated once we have
78 * populated "singularValues".
79 **/
80 private final double tol;
81
82 /**
83 * Calculates the compact Singular Value Decomposition of the given matrix.
84 *
85 * @param matrix Matrix to decompose.
86 */
87 public SingularValueDecomposition(final RealMatrix matrix) {
88 final double[][] A;
89
90 // "m" is always the largest dimension.
91 if (matrix.getRowDimension() < matrix.getColumnDimension()) {
92 transposed = true;
93 A = matrix.transpose().getData();
94 m = matrix.getColumnDimension();
95 n = matrix.getRowDimension();
96 } else {
97 transposed = false;
98 A = matrix.getData();
99 m = matrix.getRowDimension();
100 n = matrix.getColumnDimension();
101 }
102
103 singularValues = new double[n];
104 final double[][] U = new double[m][n];
105 final double[][] V = new double[n][n];
106 final double[] e = new double[n];
107 final double[] work = new double[m];
108 // Reduce A to bidiagonal form, storing the diagonal elements
109 // in s and the super-diagonal elements in e.
110 final int nct = JdkMath.min(m - 1, n);
111 final int nrt = JdkMath.max(0, n - 2);
112 for (int k = 0; k < JdkMath.max(nct, nrt); k++) {
113 if (k < nct) {
114 // Compute the transformation for the k-th column and
115 // place the k-th diagonal in s[k].
116 // Compute 2-norm of k-th column without under/overflow.
117 singularValues[k] = 0;
118 for (int i = k; i < m; i++) {
119 singularValues[k] = JdkMath.hypot(singularValues[k], A[i][k]);
120 }
121 if (singularValues[k] != 0) {
122 if (A[k][k] < 0) {
123 singularValues[k] = -singularValues[k];
124 }
125 for (int i = k; i < m; i++) {
126 A[i][k] /= singularValues[k];
127 }
128 A[k][k] += 1;
129 }
130 singularValues[k] = -singularValues[k];
131 }
132 for (int j = k + 1; j < n; j++) {
133 if (k < nct &&
134 singularValues[k] != 0) {
135 // Apply the transformation.
136 double t = 0;
137 for (int i = k; i < m; i++) {
138 t += A[i][k] * A[i][j];
139 }
140 t = -t / A[k][k];
141 for (int i = k; i < m; i++) {
142 A[i][j] += t * A[i][k];
143 }
144 }
145 // Place the k-th row of A into e for the
146 // subsequent calculation of the row transformation.
147 e[j] = A[k][j];
148 }
149 if (k < nct) {
150 // Place the transformation in U for subsequent back
151 // multiplication.
152 for (int i = k; i < m; i++) {
153 U[i][k] = A[i][k];
154 }
155 }
156 if (k < nrt) {
157 // Compute the k-th row transformation and place the
158 // k-th super-diagonal in e[k].
159 // Compute 2-norm without under/overflow.
160 e[k] = 0;
161 for (int i = k + 1; i < n; i++) {
162 e[k] = JdkMath.hypot(e[k], e[i]);
163 }
164 if (e[k] != 0) {
165 if (e[k + 1] < 0) {
166 e[k] = -e[k];
167 }
168 for (int i = k + 1; i < n; i++) {
169 e[i] /= e[k];
170 }
171 e[k + 1] += 1;
172 }
173 e[k] = -e[k];
174 if (k + 1 < m &&
175 e[k] != 0) {
176 // Apply the transformation.
177 for (int i = k + 1; i < m; i++) {
178 work[i] = 0;
179 }
180 for (int j = k + 1; j < n; j++) {
181 for (int i = k + 1; i < m; i++) {
182 work[i] += e[j] * A[i][j];
183 }
184 }
185 for (int j = k + 1; j < n; j++) {
186 final double t = -e[j] / e[k + 1];
187 for (int i = k + 1; i < m; i++) {
188 A[i][j] += t * work[i];
189 }
190 }
191 }
192
193 // Place the transformation in V for subsequent
194 // back multiplication.
195 for (int i = k + 1; i < n; i++) {
196 V[i][k] = e[i];
197 }
198 }
199 }
200 // Set up the final bidiagonal matrix or order p.
201 int p = n;
202 if (nct < n) {
203 singularValues[nct] = A[nct][nct];
204 }
205 if (m < p) {
206 singularValues[p - 1] = 0;
207 }
208 if (nrt + 1 < p) {
209 e[nrt] = A[nrt][p - 1];
210 }
211 e[p - 1] = 0;
212
213 // Generate U.
214 for (int j = nct; j < n; j++) {
215 for (int i = 0; i < m; i++) {
216 U[i][j] = 0;
217 }
218 U[j][j] = 1;
219 }
220 for (int k = nct - 1; k >= 0; k--) {
221 if (singularValues[k] != 0) {
222 for (int j = k + 1; j < n; j++) {
223 double t = 0;
224 for (int i = k; i < m; i++) {
225 t += U[i][k] * U[i][j];
226 }
227 t = -t / U[k][k];
228 for (int i = k; i < m; i++) {
229 U[i][j] += t * U[i][k];
230 }
231 }
232 for (int i = k; i < m; i++) {
233 U[i][k] = -U[i][k];
234 }
235 U[k][k] = 1 + U[k][k];
236 for (int i = 0; i < k - 1; i++) {
237 U[i][k] = 0;
238 }
239 } else {
240 for (int i = 0; i < m; i++) {
241 U[i][k] = 0;
242 }
243 U[k][k] = 1;
244 }
245 }
246
247 // Generate V.
248 for (int k = n - 1; k >= 0; k--) {
249 if (k < nrt &&
250 e[k] != 0) {
251 for (int j = k + 1; j < n; j++) {
252 double t = 0;
253 for (int i = k + 1; i < n; i++) {
254 t += V[i][k] * V[i][j];
255 }
256 t = -t / V[k + 1][k];
257 for (int i = k + 1; i < n; i++) {
258 V[i][j] += t * V[i][k];
259 }
260 }
261 }
262 for (int i = 0; i < n; i++) {
263 V[i][k] = 0;
264 }
265 V[k][k] = 1;
266 }
267
268 // Main iteration loop for the singular values.
269 final int pp = p - 1;
270 while (p > 0) {
271 int k;
272 int kase;
273 // Here is where a test for too many iterations would go.
274 // This section of the program inspects for
275 // negligible elements in the s and e arrays. On
276 // completion the variables kase and k are set as follows.
277 // kase = 1 if s(p) and e[k-1] are negligible and k<p
278 // kase = 2 if s(k) is negligible and k<p
279 // kase = 3 if e[k-1] is negligible, k<p, and
280 // s(k), ..., s(p) are not negligible (qr step).
281 // kase = 4 if e(p-1) is negligible (convergence).
282 for (k = p - 2; k >= 0; k--) {
283 final double threshold
284 = TINY + EPS * (JdkMath.abs(singularValues[k]) +
285 JdkMath.abs(singularValues[k + 1]));
286
287 // the following condition is written this way in order
288 // to break out of the loop when NaN occurs, writing it
289 // as "if (JdkMath.abs(e[k]) <= threshold)" would loop
290 // indefinitely in case of NaNs because comparison on NaNs
291 // always return false, regardless of what is checked
292 // see issue MATH-947
293 if (!(JdkMath.abs(e[k]) > threshold)) {
294 e[k] = 0;
295 break;
296 }
297 }
298
299 if (k == p - 2) {
300 kase = 4;
301 } else {
302 int ks;
303 for (ks = p - 1; ks >= k; ks--) {
304 if (ks == k) {
305 break;
306 }
307 final double t = (ks != p ? JdkMath.abs(e[ks]) : 0) +
308 (ks != k + 1 ? JdkMath.abs(e[ks - 1]) : 0);
309 if (JdkMath.abs(singularValues[ks]) <= TINY + EPS * t) {
310 singularValues[ks] = 0;
311 break;
312 }
313 }
314 if (ks == k) {
315 kase = 3;
316 } else if (ks == p - 1) {
317 kase = 1;
318 } else {
319 kase = 2;
320 k = ks;
321 }
322 }
323 k++;
324 // Perform the task indicated by kase.
325 double f;
326 switch (kase) {
327 // Deflate negligible s(p).
328 case 1:
329 f = e[p - 2];
330 e[p - 2] = 0;
331 for (int j = p - 2; j >= k; j--) {
332 double t = JdkMath.hypot(singularValues[j], f);
333 final double cs = singularValues[j] / t;
334 final double sn = f / t;
335 singularValues[j] = t;
336 if (j != k) {
337 f = -sn * e[j - 1];
338 e[j - 1] = cs * e[j - 1];
339 }
340
341 for (int i = 0; i < n; i++) {
342 t = cs * V[i][j] + sn * V[i][p - 1];
343 V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
344 V[i][j] = t;
345 }
346 }
347 break;
348 // Split at negligible s(k).
349 case 2:
350 f = e[k - 1];
351 e[k - 1] = 0;
352 for (int j = k; j < p; j++) {
353 double t = JdkMath.hypot(singularValues[j], f);
354 final double cs = singularValues[j] / t;
355 final double sn = f / t;
356 singularValues[j] = t;
357 f = -sn * e[j];
358 e[j] = cs * e[j];
359
360 for (int i = 0; i < m; i++) {
361 t = cs * U[i][j] + sn * U[i][k - 1];
362 U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
363 U[i][j] = t;
364 }
365 }
366 break;
367 // Perform one qr step.
368 case 3:
369 // Calculate the shift.
370 final double maxPm1Pm2 = JdkMath.max(JdkMath.abs(singularValues[p - 1]),
371 JdkMath.abs(singularValues[p - 2]));
372 final double scale = JdkMath.max(JdkMath.max(JdkMath.max(maxPm1Pm2,
373 JdkMath.abs(e[p - 2])),
374 JdkMath.abs(singularValues[k])),
375 JdkMath.abs(e[k]));
376 final double sp = singularValues[p - 1] / scale;
377 final double spm1 = singularValues[p - 2] / scale;
378 final double epm1 = e[p - 2] / scale;
379 final double sk = singularValues[k] / scale;
380 final double ek = e[k] / scale;
381 final double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
382 final double c = (sp * epm1) * (sp * epm1);
383 double shift = 0;
384 if (b != 0 ||
385 c != 0) {
386 shift = JdkMath.sqrt(b * b + c);
387 if (b < 0) {
388 shift = -shift;
389 }
390 shift = c / (b + shift);
391 }
392 f = (sk + sp) * (sk - sp) + shift;
393 double g = sk * ek;
394 // Chase zeros.
395 for (int j = k; j < p - 1; j++) {
396 double t = JdkMath.hypot(f, g);
397 double cs = f / t;
398 double sn = g / t;
399 if (j != k) {
400 e[j - 1] = t;
401 }
402 f = cs * singularValues[j] + sn * e[j];
403 e[j] = cs * e[j] - sn * singularValues[j];
404 g = sn * singularValues[j + 1];
405 singularValues[j + 1] = cs * singularValues[j + 1];
406
407 for (int i = 0; i < n; i++) {
408 t = cs * V[i][j] + sn * V[i][j + 1];
409 V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
410 V[i][j] = t;
411 }
412 t = JdkMath.hypot(f, g);
413 cs = f / t;
414 sn = g / t;
415 singularValues[j] = t;
416 f = cs * e[j] + sn * singularValues[j + 1];
417 singularValues[j + 1] = -sn * e[j] + cs * singularValues[j + 1];
418 g = sn * e[j + 1];
419 e[j + 1] = cs * e[j + 1];
420 if (j < m - 1) {
421 for (int i = 0; i < m; i++) {
422 t = cs * U[i][j] + sn * U[i][j + 1];
423 U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
424 U[i][j] = t;
425 }
426 }
427 }
428 e[p - 2] = f;
429 break;
430 // Convergence.
431 default:
432 // Make the singular values positive.
433 if (singularValues[k] <= 0) {
434 singularValues[k] = singularValues[k] < 0 ? -singularValues[k] : 0;
435
436 for (int i = 0; i <= pp; i++) {
437 V[i][k] = -V[i][k];
438 }
439 }
440 // Order the singular values.
441 while (k < pp) {
442 if (singularValues[k] >= singularValues[k + 1]) {
443 break;
444 }
445 double t = singularValues[k];
446 singularValues[k] = singularValues[k + 1];
447 singularValues[k + 1] = t;
448 if (k < n - 1) {
449 for (int i = 0; i < n; i++) {
450 t = V[i][k + 1];
451 V[i][k + 1] = V[i][k];
452 V[i][k] = t;
453 }
454 }
455 if (k < m - 1) {
456 for (int i = 0; i < m; i++) {
457 t = U[i][k + 1];
458 U[i][k + 1] = U[i][k];
459 U[i][k] = t;
460 }
461 }
462 k++;
463 }
464 p--;
465 break;
466 }
467 }
468
469 // Set the small value tolerance used to calculate rank and pseudo-inverse
470 tol = JdkMath.max(m * singularValues[0] * EPS,
471 JdkMath.sqrt(Precision.SAFE_MIN));
472
473 if (!transposed) {
474 cachedU = MatrixUtils.createRealMatrix(U);
475 cachedV = MatrixUtils.createRealMatrix(V);
476 } else {
477 cachedU = MatrixUtils.createRealMatrix(V);
478 cachedV = MatrixUtils.createRealMatrix(U);
479 }
480 }
481
482 /**
483 * Returns the matrix U of the decomposition.
484 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
485 * @return the U matrix
486 * @see #getUT()
487 */
488 public RealMatrix getU() {
489 // return the cached matrix
490 return cachedU;
491 }
492
493 /**
494 * Returns the transpose of the matrix U of the decomposition.
495 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
496 * @return the U matrix (or null if decomposed matrix is singular)
497 * @see #getU()
498 */
499 public RealMatrix getUT() {
500 if (cachedUt == null) {
501 cachedUt = getU().transpose();
502 }
503 // return the cached matrix
504 return cachedUt;
505 }
506
507 /**
508 * Returns the diagonal matrix Σ of the decomposition.
509 * <p>Σ is a diagonal matrix. The singular values are provided in
510 * non-increasing order, for compatibility with Jama.</p>
511 * @return the Σ matrix
512 */
513 public RealMatrix getS() {
514 if (cachedS == null) {
515 // cache the matrix for subsequent calls
516 cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues);
517 }
518 return cachedS;
519 }
520
521 /**
522 * Returns the diagonal elements of the matrix Σ of the decomposition.
523 * <p>The singular values are provided in non-increasing order, for
524 * compatibility with Jama.</p>
525 * @return the diagonal elements of the Σ matrix
526 */
527 public double[] getSingularValues() {
528 return singularValues.clone();
529 }
530
531 /**
532 * Returns the matrix V of the decomposition.
533 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
534 * @return the V matrix (or null if decomposed matrix is singular)
535 * @see #getVT()
536 */
537 public RealMatrix getV() {
538 // return the cached matrix
539 return cachedV;
540 }
541
542 /**
543 * Returns the transpose of the matrix V of the decomposition.
544 * <p>V is an orthogonal matrix, i.e. its transpose is also its inverse.</p>
545 * @return the V matrix (or null if decomposed matrix is singular)
546 * @see #getV()
547 */
548 public RealMatrix getVT() {
549 if (cachedVt == null) {
550 cachedVt = getV().transpose();
551 }
552 // return the cached matrix
553 return cachedVt;
554 }
555
556 /**
557 * Returns the n × n covariance matrix.
558 * <p>The covariance matrix is V × J × V<sup>T</sup>
559 * where J is the diagonal matrix of the inverse of the squares of
560 * the singular values.</p>
561 * @param minSingularValue value below which singular values are ignored
562 * (a 0 or negative value implies all singular value will be used)
563 * @return covariance matrix
564 * @exception IllegalArgumentException if minSingularValue is larger than
565 * the largest singular value, meaning all singular values are ignored
566 */
567 public RealMatrix getCovariance(final double minSingularValue) {
568 // get the number of singular values to consider
569 final int p = singularValues.length;
570 int dimension = 0;
571 while (dimension < p &&
572 singularValues[dimension] >= minSingularValue) {
573 ++dimension;
574 }
575
576 if (dimension == 0) {
577 throw new NumberIsTooLargeException(LocalizedFormats.TOO_LARGE_CUTOFF_SINGULAR_VALUE,
578 minSingularValue, singularValues[0], true);
579 }
580
581 final double[][] data = new double[dimension][p];
582 getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() {
583 /** {@inheritDoc} */
584 @Override
585 public void visit(final int row, final int column,
586 final double value) {
587 data[row][column] = value / singularValues[row];
588 }
589 }, 0, dimension - 1, 0, p - 1);
590
591 RealMatrix jv = new Array2DRowRealMatrix(data, false);
592 return jv.transpose().multiply(jv);
593 }
594
595 /**
596 * Returns the L<sub>2</sub> norm of the matrix.
597 * <p>The L<sub>2</sub> norm is max(|A × u|<sub>2</sub> /
598 * |u|<sub>2</sub>), where |.|<sub>2</sub> denotes the vectorial 2-norm
599 * (i.e. the traditional euclidean norm).</p>
600 * @return norm
601 */
602 public double getNorm() {
603 return singularValues[0];
604 }
605
606 /**
607 * Return the condition number of the matrix.
608 * @return condition number of the matrix
609 */
610 public double getConditionNumber() {
611 return singularValues[0] / singularValues[n - 1];
612 }
613
614 /**
615 * Computes the inverse of the condition number.
616 * In cases of rank deficiency, the {@link #getConditionNumber() condition
617 * number} will become undefined.
618 *
619 * @return the inverse of the condition number.
620 */
621 public double getInverseConditionNumber() {
622 return singularValues[n - 1] / singularValues[0];
623 }
624
625 /**
626 * Return the effective numerical matrix rank.
627 * <p>The effective numerical rank is the number of non-negligible
628 * singular values. The threshold used to identify non-negligible
629 * terms is max(m,n) × ulp(s<sub>1</sub>) where ulp(s<sub>1</sub>)
630 * is the least significant bit of the largest singular value.</p>
631 * @return effective numerical matrix rank
632 */
633 public int getRank() {
634 int r = 0;
635 for (int i = 0; i < singularValues.length; i++) {
636 if (singularValues[i] > tol) {
637 r++;
638 }
639 }
640 return r;
641 }
642
643 /**
644 * Get a solver for finding the A × X = B solution in least square sense.
645 * @return a solver
646 */
647 public DecompositionSolver getSolver() {
648 return new Solver(singularValues, getUT(), getV(), getRank() == m, tol);
649 }
650
651 /** Specialized solver. */
652 private static final class Solver implements DecompositionSolver {
653 /** Pseudo-inverse of the initial matrix. */
654 private final RealMatrix pseudoInverse;
655 /** Singularity indicator. */
656 private final boolean nonSingular;
657
658 /**
659 * Build a solver from decomposed matrix.
660 *
661 * @param singularValues Singular values.
662 * @param uT U<sup>T</sup> matrix of the decomposition.
663 * @param v V matrix of the decomposition.
664 * @param nonSingular Singularity indicator.
665 * @param tol tolerance for singular values
666 */
667 private Solver(final double[] singularValues, final RealMatrix uT,
668 final RealMatrix v, final boolean nonSingular, final double tol) {
669 final double[][] suT = uT.getData();
670 for (int i = 0; i < singularValues.length; ++i) {
671 final double a;
672 if (singularValues[i] > tol) {
673 a = 1 / singularValues[i];
674 } else {
675 a = 0;
676 }
677 final double[] suTi = suT[i];
678 for (int j = 0; j < suTi.length; ++j) {
679 suTi[j] *= a;
680 }
681 }
682 pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false));
683 this.nonSingular = nonSingular;
684 }
685
686 /**
687 * Solve the linear equation A × X = B in least square sense.
688 * <p>
689 * The m×n matrix A may not be square, the solution X is such that
690 * ||A × X - B|| is minimal.
691 * </p>
692 * @param b Right-hand side of the equation A × X = B
693 * @return a vector X that minimizes the two norm of A × X - B
694 * @throws org.apache.commons.math4.legacy.exception.DimensionMismatchException
695 * if the matrices dimensions do not match.
696 */
697 @Override
698 public RealVector solve(final RealVector b) {
699 return pseudoInverse.operate(b);
700 }
701
702 /**
703 * Solve the linear equation A × X = B in least square sense.
704 * <p>
705 * The m×n matrix A may not be square, the solution X is such that
706 * ||A × X - B|| is minimal.
707 * </p>
708 *
709 * @param b Right-hand side of the equation A × X = B
710 * @return a matrix X that minimizes the two norm of A × X - B
711 * @throws org.apache.commons.math4.legacy.exception.DimensionMismatchException
712 * if the matrices dimensions do not match.
713 */
714 @Override
715 public RealMatrix solve(final RealMatrix b) {
716 return pseudoInverse.multiply(b);
717 }
718
719 /**
720 * Check if the decomposed matrix is non-singular.
721 *
722 * @return {@code true} if the decomposed matrix is non-singular.
723 */
724 @Override
725 public boolean isNonSingular() {
726 return nonSingular;
727 }
728
729 /**
730 * Get the pseudo-inverse of the decomposed matrix.
731 *
732 * @return the inverse matrix.
733 */
734 @Override
735 public RealMatrix getInverse() {
736 return pseudoInverse;
737 }
738 }
739 }