1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.optim.nonlinear.scalar;
18
19 import org.apache.commons.math4.legacy.analysis.MultivariateFunction;
20 import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
21 import org.apache.commons.math4.legacy.analysis.function.Logit;
22 import org.apache.commons.math4.legacy.analysis.function.Sigmoid;
23 import org.apache.commons.math4.legacy.exception.NullArgumentException;
24 import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
25 import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
26 import org.apache.commons.math4.core.jdkmath.JdkMath;
27
28 /**
29 * <p>Adapter for mapping bounded {@link MultivariateFunction} to unbounded ones.</p>
30 *
31 * <p>
32 * This adapter can be used to wrap functions subject to simple bounds on
33 * parameters so they can be used by optimizers that do <em>not</em> directly
34 * support simple bounds.
35 * </p>
36 * <p>
37 * The principle is that the user function that will be wrapped will see its
38 * parameters bounded as required, i.e when its {@code value} method is called
39 * with argument array {@code point}, the elements array will fulfill requirement
40 * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components
41 * may be unbounded or bounded only on one side if the corresponding bound is
42 * set to an infinite value. The optimizer will not manage the user function by
43 * itself, but it will handle this adapter and it is this adapter that will take
44 * care the bounds are fulfilled. The adapter {@link #value(double[])} method will
45 * be called by the optimizer with unbound parameters, and the adapter will map
46 * the unbounded value to the bounded range using appropriate functions like
47 * {@link Sigmoid} for double bounded elements for example.
48 * </p>
49 * <p>
50 * As the optimizer sees only unbounded parameters, it should be noted that the
51 * start point or simplex expected by the optimizer should be unbounded, so the
52 * user is responsible for converting his bounded point to unbounded by calling
53 * {@link #boundedToUnbounded(double[])} before providing them to the optimizer.
54 * For the same reason, the point returned by the {@link
55 * org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
56 * #optimize(org.apache.commons.math4.legacy.optim.OptimizationData...)}
57 * method is unbounded. So to convert this point to bounded, users must call
58 * {@link #unboundedToBounded(double[])} by themselves!</p>
59 * <p>
60 * This adapter is only a poor man solution to simple bounds optimization constraints
61 * that can be used with simple optimizers like
62 * {@link org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.SimplexOptimizer
63 * SimplexOptimizer}.
64 * A better solution is to use an optimizer that directly supports simple bounds like
65 * {@link org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.CMAESOptimizer
66 * CMAESOptimizer} or
67 * {@link org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
68 * BOBYQAOptimizer}.
69 * One caveat of this poor-man's solution is that behavior near the bounds may be
70 * numerically unstable as bounds are mapped from infinite values.
71 * Another caveat is that convergence values are evaluated by the optimizer with
72 * respect to unbounded variables, so there will be scales differences when
73 * converted to bounded variables.
74 * </p>
75 *
76 * @see MultivariateFunctionPenaltyAdapter
77 *
78 * @since 3.0
79 */
80 public class MultivariateFunctionMappingAdapter
81 implements MultivariateFunction {
82 /** Underlying bounded function. */
83 private final MultivariateFunction bounded;
84 /** Mapping functions. */
85 private final Mapper[] mappers;
86
87 /** Simple constructor.
88 * @param bounded bounded function
89 * @param lower lower bounds for each element of the input parameters array
90 * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for
91 * unbounded values)
92 * @param upper upper bounds for each element of the input parameters array
93 * (some elements may be set to {@code Double.POSITIVE_INFINITY} for
94 * unbounded values)
95 * @exception DimensionMismatchException if lower and upper bounds are not
96 * consistent, either according to dimension or to values
97 */
98 public MultivariateFunctionMappingAdapter(final MultivariateFunction bounded,
99 final double[] lower, final double[] upper) {
100 // safety checks
101 NullArgumentException.check(lower);
102 NullArgumentException.check(upper);
103 if (lower.length != upper.length) {
104 throw new DimensionMismatchException(lower.length, upper.length);
105 }
106 for (int i = 0; i < lower.length; ++i) {
107 // note the following test is written in such a way it also fails for NaN
108 if (!(upper[i] >= lower[i])) {
109 throw new NumberIsTooSmallException(upper[i], lower[i], true);
110 }
111 }
112
113 this.bounded = bounded;
114 this.mappers = new Mapper[lower.length];
115 for (int i = 0; i < mappers.length; ++i) {
116 if (Double.isInfinite(lower[i])) {
117 if (Double.isInfinite(upper[i])) {
118 // element is unbounded, no transformation is needed
119 mappers[i] = new NoBoundsMapper();
120 } else {
121 // element is simple-bounded on the upper side
122 mappers[i] = new UpperBoundMapper(upper[i]);
123 }
124 } else {
125 if (Double.isInfinite(upper[i])) {
126 // element is simple-bounded on the lower side
127 mappers[i] = new LowerBoundMapper(lower[i]);
128 } else {
129 // element is double-bounded
130 mappers[i] = new LowerUpperBoundMapper(lower[i], upper[i]);
131 }
132 }
133 }
134 }
135
136 /**
137 * Maps an array from unbounded to bounded.
138 *
139 * @param point Unbounded values.
140 * @return the bounded values.
141 */
142 public double[] unboundedToBounded(double[] point) {
143 // Map unbounded input point to bounded point.
144 final double[] mapped = new double[mappers.length];
145 for (int i = 0; i < mappers.length; ++i) {
146 mapped[i] = mappers[i].unboundedToBounded(point[i]);
147 }
148
149 return mapped;
150 }
151
152 /**
153 * Maps an array from bounded to unbounded.
154 *
155 * @param point Bounded values.
156 * @return the unbounded values.
157 */
158 public double[] boundedToUnbounded(double[] point) {
159 // Map bounded input point to unbounded point.
160 final double[] mapped = new double[mappers.length];
161 for (int i = 0; i < mappers.length; ++i) {
162 mapped[i] = mappers[i].boundedToUnbounded(point[i]);
163 }
164
165 return mapped;
166 }
167
168 /**
169 * Compute the underlying function value from an unbounded point.
170 * <p>
171 * This method simply bounds the unbounded point using the mappings
172 * set up at construction and calls the underlying function using
173 * the bounded point.
174 * </p>
175 * @param point unbounded value
176 * @return underlying function value
177 * @see #unboundedToBounded(double[])
178 */
179 @Override
180 public double value(double[] point) {
181 return bounded.value(unboundedToBounded(point));
182 }
183
184 /** Mapping interface. */
185 private interface Mapper {
186 /**
187 * Maps a value from unbounded to bounded.
188 *
189 * @param y Unbounded value.
190 * @return the bounded value.
191 */
192 double unboundedToBounded(double y);
193
194 /**
195 * Maps a value from bounded to unbounded.
196 *
197 * @param x Bounded value.
198 * @return the unbounded value.
199 */
200 double boundedToUnbounded(double x);
201 }
202
203 /** Local class for no bounds mapping. */
204 private static final class NoBoundsMapper implements Mapper {
205 /** {@inheritDoc} */
206 @Override
207 public double unboundedToBounded(final double y) {
208 return y;
209 }
210
211 /** {@inheritDoc} */
212 @Override
213 public double boundedToUnbounded(final double x) {
214 return x;
215 }
216 }
217
218 /** Local class for lower bounds mapping. */
219 private static final class LowerBoundMapper implements Mapper {
220 /** Low bound. */
221 private final double lower;
222
223 /**
224 * Simple constructor.
225 *
226 * @param lower lower bound
227 */
228 LowerBoundMapper(final double lower) {
229 this.lower = lower;
230 }
231
232 /** {@inheritDoc} */
233 @Override
234 public double unboundedToBounded(final double y) {
235 return lower + JdkMath.exp(y);
236 }
237
238 /** {@inheritDoc} */
239 @Override
240 public double boundedToUnbounded(final double x) {
241 return JdkMath.log(x - lower);
242 }
243 }
244
245 /** Local class for upper bounds mapping. */
246 private static final class UpperBoundMapper implements Mapper {
247
248 /** Upper bound. */
249 private final double upper;
250
251 /** Simple constructor.
252 * @param upper upper bound
253 */
254 UpperBoundMapper(final double upper) {
255 this.upper = upper;
256 }
257
258 /** {@inheritDoc} */
259 @Override
260 public double unboundedToBounded(final double y) {
261 return upper - JdkMath.exp(-y);
262 }
263
264 /** {@inheritDoc} */
265 @Override
266 public double boundedToUnbounded(final double x) {
267 return -JdkMath.log(upper - x);
268 }
269 }
270
271 /** Local class for lower and bounds mapping. */
272 private static final class LowerUpperBoundMapper implements Mapper {
273 /** Function from unbounded to bounded. */
274 private final UnivariateFunction boundingFunction;
275 /** Function from bounded to unbounded. */
276 private final UnivariateFunction unboundingFunction;
277
278 /**
279 * Simple constructor.
280 *
281 * @param lower lower bound
282 * @param upper upper bound
283 */
284 LowerUpperBoundMapper(final double lower, final double upper) {
285 boundingFunction = new Sigmoid(lower, upper);
286 unboundingFunction = new Logit(lower, upper);
287 }
288
289 /** {@inheritDoc} */
290 @Override
291 public double unboundedToBounded(final double y) {
292 return boundingFunction.value(y);
293 }
294
295 /** {@inheritDoc} */
296 @Override
297 public double boundedToUnbounded(final double x) {
298 return unboundingFunction.value(x);
299 }
300 }
301 }