1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.optim.nonlinear.scalar.noderiv;
18
19 import java.util.Arrays;
20 import java.util.List;
21 import java.util.ArrayList;
22 import java.util.Comparator;
23 import java.util.Collections;
24 import java.util.Objects;
25 import java.util.function.UnaryOperator;
26 import java.util.function.IntSupplier;
27 import java.util.concurrent.CopyOnWriteArrayList;
28
29 import org.apache.commons.math4.legacy.core.MathArrays;
30 import org.apache.commons.math4.legacy.analysis.MultivariateFunction;
31 import org.apache.commons.math4.legacy.exception.MathUnsupportedOperationException;
32 import org.apache.commons.math4.legacy.exception.MathInternalError;
33 import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
34 import org.apache.commons.math4.legacy.optim.ConvergenceChecker;
35 import org.apache.commons.math4.legacy.optim.OptimizationData;
36 import org.apache.commons.math4.legacy.optim.PointValuePair;
37 import org.apache.commons.math4.legacy.optim.SimpleValueChecker;
38 import org.apache.commons.math4.legacy.optim.InitialGuess;
39 import org.apache.commons.math4.legacy.optim.MaxEval;
40 import org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType;
41 import org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer;
42 import org.apache.commons.math4.legacy.optim.nonlinear.scalar.SimulatedAnnealing;
43 import org.apache.commons.math4.legacy.optim.nonlinear.scalar.PopulationSize;
44 import org.apache.commons.math4.legacy.optim.nonlinear.scalar.ObjectiveFunction;
45
46 /**
47 * This class implements simplex-based direct search optimization.
48 *
49 * <p>
50 * Direct search methods only use objective function values, they do
51 * not need derivatives and don't either try to compute approximation
52 * of the derivatives. According to a 1996 paper by Margaret H. Wright
53 * (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
54 * Search Methods: Once Scorned, Now Respectable</a>), they are used
55 * when either the computation of the derivative is impossible (noisy
56 * functions, unpredictable discontinuities) or difficult (complexity,
57 * computation cost). In the first cases, rather than an optimum, a
58 * <em>not too bad</em> point is desired. In the latter cases, an
59 * optimum is desired but cannot be reasonably found. In all cases
60 * direct search methods can be useful.
61 *
62 * <p>
63 * Simplex-based direct search methods are based on comparison of
64 * the objective function values at the vertices of a simplex (which is a
65 * set of n+1 points in dimension n) that is updated by the algorithms
66 * steps.
67 *
68 * <p>
69 * In addition to those documented in
70 * {@link MultivariateOptimizer#optimize(OptimizationData[]) MultivariateOptimizer},
71 * an instance of this class will register the following data:
72 * <ul>
73 * <li>{@link Simplex}</li>
74 * <li>{@link Simplex.TransformFactory}</li>
75 * <li>{@link SimulatedAnnealing}</li>
76 * <li>{@link PopulationSize}</li>
77 * </ul>
78 *
79 * <p>
80 * Each call to {@code optimize} will re-use the start configuration of
81 * the current simplex and move it such that its first vertex is at the
82 * provided start point of the optimization.
83 * If the {@code optimize} method is called to solve a different problem
84 * and the number of parameters change, the simplex must be re-initialized
85 * to one with the appropriate dimensions.
86 *
87 * <p>
88 * Convergence is considered achieved when <em>all</em> the simplex points
89 * have converged.
90 * <p>
91 * Whenever {@link SimulatedAnnealing simulated annealing (SA)} is activated,
92 * and the SA phase has completed, convergence has probably not been reached
93 * yet; whenever it's the case, an additional (non-SA) search will be performed
94 * (using the current best simplex point as a start point).
95 * <p>
96 * Additional "best list" searches can be requested through setting the
97 * {@link PopulationSize} argument of the {@link #optimize(OptimizationData[])
98 * optimize} method.
99 *
100 * <p>
101 * This implementation does not directly support constrained optimization
102 * with simple bounds.
103 * The call to {@link #optimize(OptimizationData[]) optimize} will throw
104 * {@link MathUnsupportedOperationException} if bounds are passed to it.
105 *
106 * @see NelderMeadTransform
107 * @see MultiDirectionalTransform
108 * @see HedarFukushimaTransform
109 */
110 public class SimplexOptimizer extends MultivariateOptimizer {
111 /** Default simplex side length ratio. */
112 private static final double SIMPLEX_SIDE_RATIO = 1e-1;
113 /** Simplex update function factory. */
114 private Simplex.TransformFactory updateRule;
115 /** Initial simplex. */
116 private Simplex initialSimplex;
117 /** Simulated annealing setup (optional). */
118 private SimulatedAnnealing simulatedAnnealing = null;
119 /** User-defined number of additional optimizations (optional). */
120 private int populationSize = 0;
121 /** Actual number of additional optimizations. */
122 private int additionalSearch = 0;
123 /** Callbacks. */
124 private final List<Observer> callbacks = new CopyOnWriteArrayList<>();
125
126 /**
127 * @param checker Convergence checker.
128 */
129 public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
130 super(checker);
131 }
132
133 /**
134 * @param rel Relative threshold.
135 * @param abs Absolute threshold.
136 */
137 public SimplexOptimizer(double rel,
138 double abs) {
139 this(new SimpleValueChecker(rel, abs));
140 }
141
142 /**
143 * Callback interface for updating caller's code with the current
144 * state of the optimization.
145 */
146 @FunctionalInterface
147 public interface Observer {
148 /**
149 * Method called after each modification of the {@code simplex}.
150 *
151 * @param simplex Current simplex.
152 * @param isInit {@code true} at the start of a new search (either
153 * "main" or "best list"), after the initial simplex's vertices
154 * have been evaluated.
155 * @param numEval Number of evaluations of the objective function.
156 */
157 void update(Simplex simplex,
158 boolean isInit,
159 int numEval);
160 }
161
162 /**
163 * Register a callback.
164 *
165 * @param cb Callback.
166 */
167 public void addObserver(Observer cb) {
168 Objects.requireNonNull(cb, "Callback");
169 callbacks.add(cb);
170 }
171
172 /** {@inheritDoc} */
173 @Override
174 protected PointValuePair doOptimize() {
175 checkParameters();
176
177 final MultivariateFunction evalFunc = getObjectiveFunction();
178
179 final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
180 final Comparator<PointValuePair> comparator = (o1, o2) -> {
181 final double v1 = o1.getValue();
182 final double v2 = o2.getValue();
183 return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
184 };
185
186 // Start points for additional search.
187 final List<PointValuePair> bestList = new ArrayList<>();
188
189 Simplex currentSimplex = initialSimplex.translate(getStartPoint()).evaluate(evalFunc, comparator);
190 notifyObservers(currentSimplex, true);
191 double temperature = Double.NaN; // Only used with simulated annealing.
192 Simplex previousSimplex = null;
193
194 if (simulatedAnnealing != null) {
195 temperature =
196 temperature(currentSimplex.get(0),
197 currentSimplex.get(currentSimplex.getDimension()),
198 simulatedAnnealing.getStartProbability());
199 }
200
201 while (true) {
202 if (previousSimplex != null) { // Skip check at first iteration.
203 if (hasConverged(previousSimplex, currentSimplex)) {
204 return currentSimplex.get(0);
205 }
206 }
207
208 // We still need to search.
209 previousSimplex = currentSimplex;
210
211 if (simulatedAnnealing != null) {
212 // Update current temperature.
213 temperature =
214 simulatedAnnealing.getCoolingSchedule().apply(temperature,
215 currentSimplex);
216
217 final double endTemperature =
218 temperature(currentSimplex.get(0),
219 currentSimplex.get(currentSimplex.getDimension()),
220 simulatedAnnealing.getEndProbability());
221
222 if (temperature < endTemperature) {
223 break;
224 }
225
226 final UnaryOperator<Simplex> update =
227 updateRule.create(evalFunc,
228 comparator,
229 simulatedAnnealing.metropolis(temperature));
230
231 for (int i = 0; i < simulatedAnnealing.getEpochDuration(); i++) {
232 // Simplex is transformed (and observers are notified).
233 currentSimplex = applyUpdate(update,
234 currentSimplex,
235 evalFunc,
236 comparator);
237 }
238 } else {
239 // No simulated annealing.
240 final UnaryOperator<Simplex> update =
241 updateRule.create(evalFunc, comparator, null);
242
243 // Simplex is transformed (and observers are notified).
244 currentSimplex = applyUpdate(update,
245 currentSimplex,
246 evalFunc,
247 comparator);
248 }
249
250 if (additionalSearch != 0) {
251 // In "bestList", we must keep track of at least two points
252 // in order to be able to compute the new initial simplex for
253 // the additional search.
254 final int max = Math.max(additionalSearch, 2);
255
256 // Store best points.
257 for (int i = 0; i < currentSimplex.getSize(); i++) {
258 keepIfBetter(currentSimplex.get(i),
259 comparator,
260 bestList,
261 max);
262 }
263 }
264
265 incrementIterationCount();
266 }
267
268 // No convergence.
269
270 if (additionalSearch > 0) {
271 // Additional optimizations.
272 // Reference to counter in the "main" search in order to retrieve
273 // the total number of evaluations in the "best list" search.
274 final IntSupplier evalCount = () -> getEvaluations();
275
276 return bestListSearch(evalFunc,
277 comparator,
278 bestList,
279 evalCount);
280 }
281
282 throw new MathInternalError(); // Should never happen.
283 }
284
285 /**
286 * Scans the list of (required and optional) optimization data that
287 * characterize the problem.
288 *
289 * @param optData Optimization data.
290 * The following data will be looked for:
291 * <ul>
292 * <li>{@link Simplex}</li>
293 * <li>{@link Simplex.TransformFactory}</li>
294 * <li>{@link SimulatedAnnealing}</li>
295 * <li>{@link PopulationSize}</li>
296 * </ul>
297 */
298 @Override
299 protected void parseOptimizationData(OptimizationData... optData) {
300 // Allow base class to register its own data.
301 super.parseOptimizationData(optData);
302
303 // The existing values (as set by the previous call) are reused
304 // if not provided in the argument list.
305 for (OptimizationData data : optData) {
306 if (data instanceof Simplex) {
307 initialSimplex = (Simplex) data;
308 } else if (data instanceof Simplex.TransformFactory) {
309 updateRule = (Simplex.TransformFactory) data;
310 } else if (data instanceof SimulatedAnnealing) {
311 simulatedAnnealing = (SimulatedAnnealing) data;
312 } else if (data instanceof PopulationSize) {
313 populationSize = ((PopulationSize) data).getPopulationSize();
314 }
315 }
316 }
317
318 /**
319 * Detects whether the simplex has shrunk below the user-defined
320 * tolerance.
321 *
322 * @param previous Simplex at previous iteration.
323 * @param current Simplex at current iteration.
324 * @return {@code true} if convergence is considered achieved.
325 */
326 private boolean hasConverged(Simplex previous,
327 Simplex current) {
328 final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
329
330 for (int i = 0; i < current.getSize(); i++) {
331 final PointValuePair prev = previous.get(i);
332 final PointValuePair curr = current.get(i);
333
334 if (!checker.converged(getIterations(), prev, curr)) {
335 return false;
336 }
337 }
338
339 return true;
340 }
341
342 /**
343 * @throws MathUnsupportedOperationException if bounds were passed to the
344 * {@link #optimize(OptimizationData[]) optimize} method.
345 * @throws NullPointerException if no initial simplex or no transform rule
346 * was passed to the {@link #optimize(OptimizationData[]) optimize} method.
347 * @throws IllegalArgumentException if {@link #populationSize} is negative.
348 */
349 private void checkParameters() {
350 Objects.requireNonNull(updateRule, "Update rule");
351 Objects.requireNonNull(initialSimplex, "Initial simplex");
352
353 if (getLowerBound() != null ||
354 getUpperBound() != null) {
355 throw new MathUnsupportedOperationException(LocalizedFormats.CONSTRAINT);
356 }
357
358 if (populationSize < 0) {
359 throw new IllegalArgumentException("Population size");
360 }
361
362 additionalSearch = simulatedAnnealing == null ?
363 Math.max(0, populationSize) :
364 Math.max(1, populationSize);
365 }
366
367 /**
368 * Computes the temperature as a function of the acceptance probability
369 * and the fitness difference between two of the simplex vertices (usually
370 * the best and worst points).
371 *
372 * @param p1 Simplex point.
373 * @param p2 Simplex point.
374 * @param prob Acceptance probability.
375 * @return the temperature.
376 */
377 private double temperature(PointValuePair p1,
378 PointValuePair p2,
379 double prob) {
380 return -Math.abs(p1.getValue() - p2.getValue()) / Math.log(prob);
381 }
382
383 /**
384 * Stores the given {@code candidate} if its fitness is better than
385 * that of the last (assumed to be the worst) point in {@code list}.
386 *
387 * <p>If the list is below the maximum size then the {@code candidate}
388 * is added if it is not already in the list. The list is sorted
389 * when it reaches the maximum size.
390 *
391 * @param candidate Point to be stored.
392 * @param comp Fitness comparator.
393 * @param list Starting points (modified in-place).
394 * @param max Maximum size of the {@code list}.
395 */
396 private static void keepIfBetter(PointValuePair candidate,
397 Comparator<PointValuePair> comp,
398 List<PointValuePair> list,
399 int max) {
400 final int listSize = list.size();
401 final double[] candidatePoint = candidate.getPoint();
402 if (listSize == 0) {
403 list.add(candidate);
404 } else if (listSize < max) {
405 // List is not fully populated yet.
406 for (PointValuePair p : list) {
407 final double[] pPoint = p.getPoint();
408 if (Arrays.equals(pPoint, candidatePoint)) {
409 // Point was already stored.
410 return;
411 }
412 }
413 // Store candidate.
414 list.add(candidate);
415 // Sort the list when required
416 if (list.size() == max) {
417 Collections.sort(list, comp);
418 }
419 } else {
420 final int last = max - 1;
421 if (comp.compare(candidate, list.get(last)) < 0) {
422 for (PointValuePair p : list) {
423 final double[] pPoint = p.getPoint();
424 if (Arrays.equals(pPoint, candidatePoint)) {
425 // Point was already stored.
426 return;
427 }
428 }
429
430 // Store better candidate and reorder the list.
431 list.set(last, candidate);
432 Collections.sort(list, comp);
433 }
434 }
435 }
436
437 /**
438 * Computes the smallest distance between the given {@code point}
439 * and any of the other points in the {@code list}.
440 *
441 * @param point Point.
442 * @param list List.
443 * @return the smallest distance.
444 */
445 private static double shortestDistance(PointValuePair point,
446 List<PointValuePair> list) {
447 double minDist = Double.POSITIVE_INFINITY;
448
449 final double[] p = point.getPoint();
450 for (PointValuePair other : list) {
451 final double[] pOther = other.getPoint();
452 if (!Arrays.equals(p, pOther)) {
453 final double dist = MathArrays.distance(p, pOther);
454 if (dist < minDist) {
455 minDist = dist;
456 }
457 }
458 }
459
460 return minDist;
461 }
462
463 /**
464 * Perform additional optimizations.
465 *
466 * @param evalFunc Objective function.
467 * @param comp Fitness comparator.
468 * @param bestList Best points encountered during the "main" search.
469 * List is assumed to be ordered from best to worst.
470 * @param evalCount Evaluation counter.
471 * @return the optimum.
472 */
473 private PointValuePair bestListSearch(MultivariateFunction evalFunc,
474 Comparator<PointValuePair> comp,
475 List<PointValuePair> bestList,
476 IntSupplier evalCount) {
477 PointValuePair best = bestList.get(0); // Overall best result.
478
479 // Additional local optimizations using each of the best
480 // points visited during the main search.
481 for (int i = 0; i < additionalSearch; i++) {
482 final PointValuePair start = bestList.get(i);
483 // Find shortest distance to the other points.
484 final double dist = shortestDistance(start, bestList);
485 final double[] init = start.getPoint();
486 // Create smaller initial simplex.
487 final Simplex simplex = Simplex.equalSidesAlongAxes(init.length,
488 SIMPLEX_SIDE_RATIO * dist);
489
490 final PointValuePair r = directSearch(init,
491 simplex,
492 evalFunc,
493 getConvergenceChecker(),
494 getGoalType(),
495 callbacks,
496 evalCount);
497 if (comp.compare(r, best) < 0) {
498 best = r; // New overall best.
499 }
500 }
501
502 return best;
503 }
504
505 /**
506 * @param init Start point.
507 * @param simplex Initial simplex.
508 * @param eval Objective function.
509 * Note: It is assumed that evaluations of this function are
510 * incrementing the main counter.
511 * @param checker Convergence checker.
512 * @param goalType Whether to minimize or maximize the objective function.
513 * @param cbList Callbacks.
514 * @param evalCount Evaluation counter.
515 * @return the optimum.
516 */
517 private static PointValuePair directSearch(double[] init,
518 Simplex simplex,
519 MultivariateFunction eval,
520 ConvergenceChecker<PointValuePair> checker,
521 GoalType goalType,
522 List<Observer> cbList,
523 final IntSupplier evalCount) {
524 final SimplexOptimizer optim = new SimplexOptimizer(checker);
525
526 for (Observer cOrig : cbList) {
527 final SimplexOptimizer.Observer cNew = (spx, isInit, numEval) ->
528 cOrig.update(spx, isInit, evalCount.getAsInt());
529
530 optim.addObserver(cNew);
531 }
532
533 return optim.optimize(MaxEval.unlimited(),
534 new ObjectiveFunction(eval),
535 goalType,
536 new InitialGuess(init),
537 simplex,
538 new MultiDirectionalTransform());
539 }
540
541 /**
542 * @param simplex Current simplex.
543 * @param isInit Set to {@code true} at the start of a new search
544 * (either "main" or "best list"), after the evaluation of the initial
545 * simplex's vertices.
546 */
547 private void notifyObservers(Simplex simplex,
548 boolean isInit) {
549 for (Observer cb : callbacks) {
550 cb.update(simplex,
551 isInit,
552 getEvaluations());
553 }
554 }
555
556 /**
557 * Applies the {@code update} to the given {@code simplex} (and notifies
558 * observers).
559 *
560 * @param update Simplex transformation.
561 * @param simplex Current simplex.
562 * @param eval Objective function.
563 * @param comp Fitness comparator.
564 * @return the transformed simplex.
565 */
566 private Simplex applyUpdate(UnaryOperator<Simplex> update,
567 Simplex simplex,
568 MultivariateFunction eval,
569 Comparator<PointValuePair> comp) {
570 final Simplex transformed = update.apply(simplex).evaluate(eval, comp);
571
572 notifyObservers(transformed, false);
573
574 return transformed;
575 }
576 }