1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.legacy.random;
18
19 import java.util.function.Supplier;
20
21 import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
22 import org.apache.commons.math4.legacy.exception.NotPositiveException;
23 import org.apache.commons.math4.legacy.exception.NullArgumentException;
24 import org.apache.commons.math4.legacy.exception.OutOfRangeException;
25
26 /**
27 * Implementation of a Halton sequence.
28 * <p>
29 * A Halton sequence is a low-discrepancy sequence generating points in the interval [0, 1] according to
30 * <pre>
31 * H(n) = d_0 / b + d_1 / b^2 .... d_j / b^j+1
32 *
33 * with
34 *
35 * n = d_j * b^j-1 + ... d_1 * b + d_0 * b^0
36 * </pre>
37 * For higher dimensions, subsequent prime numbers are used as base, e.g. { 2, 3, 5 } for a Halton sequence in R^3.
38 * <p>
39 * Halton sequences are known to suffer from linear correlation for larger prime numbers, thus the individual digits
40 * are usually scrambled. This implementation already comes with support for up to 40 dimensions with optimal weight
41 * numbers from <a href="http://etd.lib.fsu.edu/theses/available/etd-07062004-140409/unrestricted/dissertation1.pdf">
42 * H. Chi: Scrambled quasirandom sequences and their applications</a>.
43 * <p>
44 * The generator supports two modes:
45 * <ul>
46 * <li>sequential generation of points: {@link #get()}</li>
47 * <li>random access to the i-th point in the sequence: {@link #skipTo(int)}</li>
48 * </ul>
49 *
50 * @see <a href="http://en.wikipedia.org/wiki/Halton_sequence">Halton sequence (Wikipedia)</a>
51 * @see <a href="https://lirias.kuleuven.be/bitstream/123456789/131168/1/mcm2005_bartv.pdf">
52 * On the Halton sequence and its scramblings</a>
53 * @since 3.3
54 */
55 public class HaltonSequenceGenerator implements Supplier<double[]> {
56
57 /** The first 40 primes. */
58 private static final int[] PRIMES = new int[] {
59 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
60 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
61 149, 151, 157, 163, 167, 173
62 };
63
64 /** The optimal weights used for scrambling of the first 40 dimension. */
65 private static final int[] WEIGHTS = new int[] {
66 1, 2, 3, 3, 8, 11, 12, 14, 7, 18, 12, 13, 17, 18, 29, 14, 18, 43, 41,
67 44, 40, 30, 47, 65, 71, 28, 40, 60, 79, 89, 56, 50, 52, 61, 108, 56,
68 66, 63, 60, 66
69 };
70
71 /** Space dimension. */
72 private final int dimension;
73
74 /** The current index in the sequence. */
75 private int count;
76
77 /** The base numbers for each component. */
78 private final int[] base;
79
80 /** The scrambling weights for each component. */
81 private final int[] weight;
82
83 /**
84 * Construct a new Halton sequence generator for the given space dimension.
85 *
86 * @param dimension the space dimension
87 * @throws OutOfRangeException if the space dimension is outside the allowed range of [1, 40]
88 */
89 public HaltonSequenceGenerator(final int dimension) {
90 this(dimension, PRIMES, WEIGHTS);
91 }
92
93 /**
94 * Construct a new Halton sequence generator with the given base numbers and weights for each dimension.
95 * The length of the bases array defines the space dimension and is required to be > 0.
96 *
97 * @param dimension the space dimension
98 * @param bases the base number for each dimension, entries should be (pairwise) prime, may not be null
99 * @param weights the weights used during scrambling, may be null in which case no scrambling will be performed
100 * @throws NullArgumentException if base is null
101 * @throws OutOfRangeException if the space dimension is outside the range [1, len], where
102 * len refers to the length of the bases array
103 * @throws DimensionMismatchException if weights is non-null and the length of the input arrays differ
104 */
105 public HaltonSequenceGenerator(final int dimension, final int[] bases, final int[] weights) {
106 NullArgumentException.check(bases);
107
108 if (dimension < 1 || dimension > bases.length) {
109 throw new OutOfRangeException(dimension, 1, PRIMES.length);
110 }
111
112 if (weights != null && weights.length != bases.length) {
113 throw new DimensionMismatchException(weights.length, bases.length);
114 }
115
116 this.dimension = dimension;
117 this.base = bases.clone();
118 this.weight = weights == null ? null : weights.clone();
119 count = 0;
120 }
121
122 /** {@inheritDoc} */
123 @Override
124 public double[] get() {
125 final double[] v = new double[dimension];
126 for (int i = 0; i < dimension; i++) {
127 int index = count;
128 double f = 1.0 / base[i];
129
130 int j = 0;
131 while (index > 0) {
132 final int digit = scramble(i, j, base[i], index % base[i]);
133 v[i] += f * digit;
134 index /= base[i]; // floor( index / base )
135 f /= base[i];
136 }
137 }
138 count++;
139 return v;
140 }
141
142 /**
143 * Performs scrambling of digit {@code d_j} according to the formula:
144 * <pre>
145 * ( weight_i * d_j ) mod base
146 * </pre>
147 * Implementations can override this method to do a different scrambling.
148 *
149 * @param i the dimension index
150 * @param j the digit index
151 * @param b the base for this dimension
152 * @param digit the j-th digit
153 * @return the scrambled digit
154 */
155 protected int scramble(final int i, final int j, final int b, final int digit) {
156 return weight != null ? (weight[i] * digit) % b : digit;
157 }
158
159 /**
160 * Skip to the i-th point in the Halton sequence.
161 * <p>
162 * This operation can be performed in O(1).
163 *
164 * @param index the index in the sequence to skip to
165 * @return the i-th point in the Halton sequence
166 * @throws NotPositiveException if {@code index < 0}.
167 */
168 public double[] skipTo(final int index) {
169 if (index < 0) {
170 throw new NotPositiveException(index);
171 }
172
173 count = index;
174 return get();
175 }
176
177 /**
178 * Returns the index i of the next point in the Halton sequence that will be returned
179 * by calling {@link #get()}.
180 *
181 * @return the index of the next point
182 */
183 public int getNextIndex() {
184 return count;
185 }
186 }