1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.math4.transform;
18
19 import java.util.function.UnaryOperator;
20 import java.util.function.DoubleUnaryOperator;
21
22 import org.apache.commons.numbers.complex.Complex;
23 import org.apache.commons.numbers.core.ArithmeticUtils;
24
25 /**
26 * Implements the Fast Sine Transform for transformation of one-dimensional real
27 * data sets. For reference, see James S. Walker, <em>Fast Fourier
28 * Transforms</em>, chapter 3 (ISBN 0849371635).
29 * <p>
30 * There are several variants of the discrete sine transform. The present
31 * implementation corresponds to DST-I, with various normalization conventions,
32 * which are specified by the parameter {@link Norm}.
33 * <strong>It should be noted that regardless to the convention, the first
34 * element of the dataset to be transformed must be zero.</strong>
35 * <p>
36 * DST-I is equivalent to DFT of an <em>odd extension</em> of the data series.
37 * More precisely, if x<sub>0</sub>, …, x<sub>N-1</sub> is the data set
38 * to be sine transformed, the extended data set x<sub>0</sub><sup>#</sup>,
39 * …, x<sub>2N-1</sub><sup>#</sup> is defined as follows
40 * <ul>
41 * <li>x<sub>0</sub><sup>#</sup> = x<sub>0</sub> = 0,</li>
42 * <li>x<sub>k</sub><sup>#</sup> = x<sub>k</sub> if 1 ≤ k < N,</li>
43 * <li>x<sub>N</sub><sup>#</sup> = 0,</li>
44 * <li>x<sub>k</sub><sup>#</sup> = -x<sub>2N-k</sub> if N + 1 ≤ k <
45 * 2N.</li>
46 * </ul>
47 * <p>
48 * Then, the standard DST-I y<sub>0</sub>, …, y<sub>N-1</sub> of the real
49 * data set x<sub>0</sub>, …, x<sub>N-1</sub> is equal to <em>half</em>
50 * of i (the pure imaginary number) times the N first elements of the DFT of the
51 * extended data set x<sub>0</sub><sup>#</sup>, …,
52 * x<sub>2N-1</sub><sup>#</sup> <br>
53 * y<sub>n</sub> = (i / 2) ∑<sub>k=0</sub><sup>2N-1</sup>
54 * x<sub>k</sub><sup>#</sup> exp[-2πi nk / (2N)]
55 * k = 0, …, N-1.
56 * <p>
57 * The present implementation of the discrete sine transform as a fast sine
58 * transform requires the length of the data to be a power of two. Besides,
59 * it implicitly assumes that the sampled function is odd. In particular, the
60 * first element of the data set must be 0, which is enforced in
61 * {@link #apply(DoubleUnaryOperator, double, double, int)},
62 * after sampling.
63 */
64 public class FastSineTransform implements RealTransform {
65 /** Operation to be performed. */
66 private final UnaryOperator<double[]> op;
67
68 /**
69 * @param normalization Normalization to be applied to the transformed data.
70 * @param inverse Whether to perform the inverse transform.
71 */
72 public FastSineTransform(final Norm normalization,
73 final boolean inverse) {
74 op = create(normalization, inverse);
75 }
76
77 /**
78 * @param normalization Normalization to be applied to the
79 * transformed data.
80 */
81 public FastSineTransform(final Norm normalization) {
82 this(normalization, false);
83 }
84
85 /**
86 * {@inheritDoc}
87 *
88 * The first element of the specified data set is required to be {@code 0}.
89 *
90 * @throws IllegalArgumentException if the length of the data array is
91 * not a power of two, or the first element of the data array is not zero.
92 */
93 @Override
94 public double[] apply(final double[] f) {
95 return op.apply(f);
96 }
97
98 /**
99 * {@inheritDoc}
100 *
101 * The implementation enforces {@code f(x) = 0} at {@code x = 0}.
102 *
103 * @throws IllegalArgumentException if the number of sample points is not a
104 * power of two, if the lower bound is greater than, or equal to the upper bound,
105 * if the number of sample points is negative.
106 */
107 @Override
108 public double[] apply(final DoubleUnaryOperator f,
109 final double min,
110 final double max,
111 final int n) {
112 final double[] data = TransformUtils.sample(f, min, max, n);
113 data[0] = 0;
114 return apply(data);
115 }
116
117 /**
118 * Perform the FST algorithm (including inverse).
119 * The first element of the data set is required to be {@code 0}.
120 *
121 * @param f Data array to be transformed.
122 * @return the transformed array.
123 * @throws IllegalArgumentException if the length of the data array is
124 * not a power of two, or the first element of the data array is not zero.
125 */
126 private double[] fst(double[] f) {
127 if (!ArithmeticUtils.isPowerOfTwo(f.length)) {
128 throw new TransformException(TransformException.NOT_POWER_OF_TWO,
129 f.length);
130 }
131 if (f[0] != 0) {
132 throw new TransformException(TransformException.FIRST_ELEMENT_NOT_ZERO,
133 f[0]);
134 }
135
136 final double[] transformed = new double[f.length];
137 final int n = f.length;
138 if (n == 1) {
139 transformed[0] = 0;
140 return transformed;
141 }
142
143 // construct a new array and perform FFT on it
144 final double[] x = new double[n];
145 x[0] = 0;
146 final int nShifted = n >> 1;
147 x[nShifted] = 2 * f[nShifted];
148 final double piOverN = Math.PI / n;
149 for (int i = 1; i < nShifted; i++) {
150 final int nMi = n - i;
151 final double fi = f[i];
152 final double fnMi = f[nMi];
153 final double a = Math.sin(i * piOverN) * (fi + fnMi);
154 final double b = 0.5 * (fi - fnMi);
155 x[i] = a + b;
156 x[nMi] = a - b;
157 }
158
159 final FastFourierTransform transform = new FastFourierTransform(FastFourierTransform.Norm.STD);
160 final Complex[] y = transform.apply(x);
161
162 // reconstruct the FST result for the original array
163 transformed[0] = 0;
164 transformed[1] = 0.5 * y[0].getReal();
165 for (int i = 1; i < nShifted; i++) {
166 final int i2 = 2 * i;
167 transformed[i2] = -y[i].getImaginary();
168 transformed[i2 + 1] = y[i].getReal() + transformed[i2 - 1];
169 }
170
171 return transformed;
172 }
173
174 /**
175 * Factory method.
176 *
177 * @param normalization Normalization to be applied to the
178 * transformed data.
179 * @param inverse Whether to perform the inverse transform.
180 * @return the transform operator.
181 */
182 private UnaryOperator<double[]> create(final Norm normalization,
183 final boolean inverse) {
184 if (inverse) {
185 return normalization == Norm.ORTHO ?
186 f -> TransformUtils.scaleInPlace(fst(f), Math.sqrt(2d / f.length)) :
187 f -> TransformUtils.scaleInPlace(fst(f), 2d / f.length);
188 } else {
189 return normalization == Norm.ORTHO ?
190 f -> TransformUtils.scaleInPlace(fst(f), Math.sqrt(2d / f.length)) :
191 f -> fst(f);
192 }
193 }
194
195 /**
196 * Normalization types.
197 */
198 public enum Norm {
199 /**
200 * Should be passed to the constructor of {@link FastSineTransform} to
201 * use the <em>standard</em> normalization convention. The standard DST-I
202 * normalization convention is defined as follows
203 * <ul>
204 * <li>forward transform: y<sub>n</sub> = ∑<sub>k=0</sub><sup>N-1</sup>
205 * x<sub>k</sub> sin(π nk / N),</li>
206 * <li>inverse transform: x<sub>k</sub> = (2 / N)
207 * ∑<sub>n=0</sub><sup>N-1</sup> y<sub>n</sub> sin(π nk / N),</li>
208 * </ul>
209 * where N is the size of the data sample, and x<sub>0</sub> = 0.
210 */
211 STD,
212
213 /**
214 * Should be passed to the constructor of {@link FastSineTransform} to
215 * use the <em>orthogonal</em> normalization convention. The orthogonal
216 * DCT-I normalization convention is defined as follows
217 * <ul>
218 * <li>Forward transform: y<sub>n</sub> = √(2 / N)
219 * ∑<sub>k=0</sub><sup>N-1</sup> x<sub>k</sub> sin(π nk / N),</li>
220 * <li>Inverse transform: x<sub>k</sub> = √(2 / N)
221 * ∑<sub>n=0</sub><sup>N-1</sup> y<sub>n</sub> sin(π nk / N),</li>
222 * </ul>
223 * which makes the transform orthogonal. N is the size of the data sample,
224 * and x<sub>0</sub> = 0.
225 */
226 ORTHO
227 }
228 }