1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 package org.apache.commons.numbers.combinatorics; 19 20 /** 21 * Representation of the <a href="http://mathworld.wolfram.com/BinomialCoefficient.html"> 22 * binomial coefficient</a>, as a {@code double}. 23 * It is "{@code n choose k}", the number of {@code k}-element subsets that 24 * can be selected from an {@code n}-element set. 25 */ 26 public final class BinomialCoefficientDouble { 27 /** The maximum factorial that can be represented as a double. */ 28 private static final int MAX_FACTORIAL = 170; 29 /** The maximum n that can be computed without overflow of a long for any m. 30 * {@code C(66, 33) < 2^63}. */ 31 private static final int LIMIT_N_LONG = 66; 32 /** The maximum m that can be computed without overflow of a double. 33 * C(1030, 515) ~ 2.85e308. */ 34 private static final int MAX_M = 514; 35 /** The maximum n that can be computed without intermediate overflow for any m. 36 * C(1020, 510) * 510 ~ 1.43e308. */ 37 private static final int SMALL_N = 1020; 38 /** The maximum m that can be computed without intermediate overflow for any n. 39 * C(2147483647, 37) * 37 ~ 5.13e303. */ 40 private static final int SMALL_M = 37; 41 42 /** Private constructor. */ 43 private BinomialCoefficientDouble() { 44 // intentionally empty. 45 } 46 47 /** 48 * Computes the binomial coefficient. 49 * 50 * <p>The largest value of {@code n} for which <em>all</em> coefficients can 51 * fit into a {@code double} is 1029. Larger {@code n} may result in 52 * infinity depending on the value of {@code k}. 53 * 54 * <p>Any {@code min(k, n - k) >= 515} cannot fit into a {@code double} 55 * and will result in infinity. 56 * 57 * @param n Size of the set. 58 * @param k Size of the subsets to be counted. 59 * @return {@code n choose k}. 60 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}. 61 */ 62 public static double value(int n, int k) { 63 if (n <= LIMIT_N_LONG) { 64 // Delegate to the exact long result 65 return BinomialCoefficient.value(n, k); 66 } 67 final int m = BinomialCoefficient.checkBinomial(n, k); 68 69 if (m == 0) { 70 return 1; 71 } 72 if (m == 1) { 73 return n; 74 } 75 76 double result; 77 if (n <= MAX_FACTORIAL) { 78 // Small factorials are tabulated exactly 79 // n! / m! / (n-m)! 80 result = Factorial.uncheckedFactorial(n) / 81 Factorial.uncheckedFactorial(m) / 82 Factorial.uncheckedFactorial(n - m); 83 } else { 84 // Compute recursively using: 85 // (n choose m) = (n-1 choose m-1) * n / m 86 87 if (n <= SMALL_N || m <= SMALL_M) { 88 // No overflow possible 89 result = 1; 90 for (int i = 1; i <= m; i++) { 91 result *= n - m + i; 92 result /= i; 93 } 94 } else { 95 if (m > MAX_M) { 96 return Double.POSITIVE_INFINITY; 97 } 98 99 // Compute the initial part without overflow checks 100 result = 1; 101 for (int i = 1; i <= SMALL_M; i++) { 102 result *= n - m + i; 103 result /= i; 104 } 105 // Careful of overflow 106 for (int i = SMALL_M + 1; i <= m; i++) { 107 final double next = result * (n - m + i); 108 if (next > Double.MAX_VALUE) { 109 // Reverse order of terms 110 result /= i; 111 result *= n - m + i; 112 if (result > Double.MAX_VALUE) { 113 // Definite overflow 114 return Double.POSITIVE_INFINITY; 115 } 116 } else { 117 result = next / i; 118 } 119 } 120 } 121 } 122 123 return Math.floor(result + 0.5); 124 } 125 }