1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 package org.apache.commons.numbers.combinatorics;
19
20 /**
21 * Computation of <a href="https://en.wikipedia.org/wiki/Stirling_number">Stirling numbers</a>.
22 *
23 * @since 1.2
24 */
25 public final class Stirling {
26 /** Stirling S1 error message. */
27 private static final String S1_ERROR_FORMAT = "s(n=%d, k=%d)";
28 /** Stirling S2 error message. */
29 private static final String S2_ERROR_FORMAT = "S(n=%d, k=%d)";
30 /** Overflow threshold for n when computing s(n, 1). */
31 private static final int S1_OVERFLOW_K_EQUALS_1 = 21;
32 /** Overflow threshold for n when computing s(n, n-2). */
33 private static final int S1_OVERFLOW_K_EQUALS_NM2 = 92682;
34 /** Overflow threshold for n when computing s(n, n-3). */
35 private static final int S1_OVERFLOW_K_EQUALS_NM3 = 2761;
36 /** Overflow threshold for n when computing S(n, n-2). */
37 private static final int S2_OVERFLOW_K_EQUALS_NM2 = 92683;
38 /** Overflow threshold for n when computing S(n, n-3). */
39 private static final int S2_OVERFLOW_K_EQUALS_NM3 = 2762;
40
41 /**
42 * Precomputed Stirling numbers of the first kind.
43 * Provides a thread-safe lazy initialization of the cache.
44 */
45 private static final class StirlingS1Cache {
46 /** Maximum n to compute (exclusive).
47 * As s(21,3) = 13803759753640704000 is larger than Long.MAX_VALUE
48 * we must stop computation at row 21. */
49 static final int MAX_N = 21;
50 /** Stirling numbers of the first kind. */
51 static final long[][] S1;
52
53 static {
54 S1 = new long[MAX_N][];
55 // Initialise first two rows to allow s(2, 1) to use s(1, 1)
56 S1[0] = new long[] {1};
57 S1[1] = new long[] {0, 1};
58 for (int n = 2; n < S1.length; n++) {
59 S1[n] = new long[n + 1];
60 S1[n][0] = 0;
61 S1[n][n] = 1;
62 for (int k = 1; k < n; k++) {
63 S1[n][k] = S1[n - 1][k - 1] - (n - 1) * S1[n - 1][k];
64 }
65 }
66 }
67 }
68
69 /**
70 * Precomputed Stirling numbers of the second kind.
71 * Provides a thread-safe lazy initialization of the cache.
72 */
73 private static final class StirlingS2Cache {
74 /** Maximum n to compute (exclusive).
75 * As S(26,9) = 11201516780955125625 is larger than Long.MAX_VALUE
76 * we must stop computation at row 26. */
77 static final int MAX_N = 26;
78 /** Stirling numbers of the second kind. */
79 static final long[][] S2;
80
81 static {
82 S2 = new long[MAX_N][];
83 S2[0] = new long[] {1};
84 for (int n = 1; n < S2.length; n++) {
85 S2[n] = new long[n + 1];
86 S2[n][0] = 0;
87 S2[n][1] = 1;
88 S2[n][n] = 1;
89 for (int k = 2; k < n; k++) {
90 S2[n][k] = k * S2[n - 1][k] + S2[n - 1][k - 1];
91 }
92 }
93 }
94 }
95
96 /** Private constructor. */
97 private Stirling() {
98 // intentionally empty.
99 }
100
101 /**
102 * Returns the <em>signed</em> <a
103 * href="https://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html">
104 * Stirling number of the first kind</a>, "{@code s(n,k)}". The number of permutations of
105 * {@code n} elements which contain exactly {@code k} permutation cycles is the
106 * nonnegative number: {@code |s(n,k)| = (-1)^(n-k) s(n,k)}
107 *
108 * @param n Size of the set
109 * @param k Number of permutation cycles ({@code 0 <= k <= n})
110 * @return {@code s(n,k)}
111 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}.
112 * @throws ArithmeticException if some overflow happens, typically for n exceeding 20
113 * (s(n,n-1) is handled specifically and does not overflow)
114 */
115 public static long stirlingS1(int n, int k) {
116 checkArguments(n, k);
117
118 if (n < StirlingS1Cache.MAX_N) {
119 // The number is in the small cache
120 return StirlingS1Cache.S1[n][k];
121 }
122
123 // Simple cases
124 // https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind#Simple_identities
125 if (k == 0) {
126 return 0;
127 } else if (k == n) {
128 return 1;
129 } else if (k == 1) {
130 checkN(n, k, S1_OVERFLOW_K_EQUALS_1, S1_ERROR_FORMAT);
131 // Note: Only occurs for n=21 so avoid computing the sign with pow(-1, n-1) * (n-1)!
132 return Factorial.value(n - 1);
133 } else if (k == n - 1) {
134 return -BinomialCoefficient.value(n, 2);
135 } else if (k == n - 2) {
136 checkN(n, k, S1_OVERFLOW_K_EQUALS_NM2, S1_ERROR_FORMAT);
137 // (3n-1) * binom(n, 3) / 4
138 return productOver4(3L * n - 1, BinomialCoefficient.value(n, 3));
139 } else if (k == n - 3) {
140 checkN(n, k, S1_OVERFLOW_K_EQUALS_NM3, S1_ERROR_FORMAT);
141 return -BinomialCoefficient.value(n, 2) * BinomialCoefficient.value(n, 4);
142 }
143
144 // Compute using:
145 // s(n + 1, k) = s(n, k - 1) - n * s(n, k)
146 // s(n, k) = s(n - 1, k - 1) - (n - 1) * s(n - 1, k)
147
148 // n >= 21 (MAX_N)
149 // 2 <= k <= n-4
150
151 // Start at the largest easily computed value: n < MAX_N or k < 2
152 final int reduction = Math.min(n - StirlingS1Cache.MAX_N, k - 2) + 1;
153 int n0 = n - reduction;
154 int k0 = k - reduction;
155
156 long sum = stirlingS1(n0, k0);
157 while (n0 < n) {
158 k0++;
159 sum = Math.subtractExact(
160 sum,
161 Math.multiplyExact(n0, stirlingS1(n0, k0))
162 );
163 n0++;
164 }
165
166 return sum;
167 }
168
169 /**
170 * Returns the <a
171 * href="https://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html">
172 * Stirling number of the second kind</a>, "{@code S(n,k)}", the number of
173 * ways of partitioning an {@code n}-element set into {@code k} non-empty
174 * subsets.
175 *
176 * @param n Size of the set
177 * @param k Number of non-empty subsets ({@code 0 <= k <= n})
178 * @return {@code S(n,k)}
179 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}.
180 * @throws ArithmeticException if some overflow happens, typically for n exceeding 25 and
181 * k between 20 and n-2 (S(n,n-1) is handled specifically and does not overflow)
182 */
183 public static long stirlingS2(int n, int k) {
184 checkArguments(n, k);
185
186 if (n < StirlingS2Cache.MAX_N) {
187 // The number is in the small cache
188 return StirlingS2Cache.S2[n][k];
189 }
190
191 // Simple cases
192 if (k == 0) {
193 return 0;
194 } else if (k == 1 || k == n) {
195 return 1;
196 } else if (k == 2) {
197 checkN(n, k, 64, S2_ERROR_FORMAT);
198 return (1L << (n - 1)) - 1L;
199 } else if (k == n - 1) {
200 return BinomialCoefficient.value(n, 2);
201 } else if (k == n - 2) {
202 checkN(n, k, S2_OVERFLOW_K_EQUALS_NM2, S2_ERROR_FORMAT);
203 // (3n-5) * binom(n, 3) / 4
204 return productOver4(3L * n - 5, BinomialCoefficient.value(n, 3));
205 } else if (k == n - 3) {
206 checkN(n, k, S2_OVERFLOW_K_EQUALS_NM3, S2_ERROR_FORMAT);
207 return BinomialCoefficient.value(n - 2, 2) * BinomialCoefficient.value(n, 4);
208 }
209
210 // Compute using:
211 // S(n, k) = k * S(n - 1, k) + S(n - 1, k - 1)
212
213 // n >= 26 (MAX_N)
214 // 3 <= k <= n-3
215
216 // Start at the largest easily computed value: n < MAX_N or k < 3
217 final int reduction = Math.min(n - StirlingS2Cache.MAX_N, k - 3) + 1;
218 int n0 = n - reduction;
219 int k0 = k - reduction;
220
221 long sum = stirlingS2(n0, k0);
222 while (n0 < n) {
223 k0++;
224 sum = Math.addExact(
225 Math.multiplyExact(k0, stirlingS2(n0, k0)),
226 sum
227 );
228 n0++;
229 }
230
231 return sum;
232 }
233
234 /**
235 * Check {@code 0 <= k <= n}.
236 *
237 * @param n N
238 * @param k K
239 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}.
240 */
241 private static void checkArguments(int n, int k) {
242 // Combine all checks with a single branch:
243 // 0 <= n; 0 <= k <= n
244 // Note: If n >= 0 && k >= 0 && n - k < 0 then k > n.
245 // Bitwise or will detect a negative sign bit in any of the numbers
246 if ((n | k | (n - k)) < 0) {
247 // Raise the correct exception
248 if (n < 0) {
249 throw new CombinatoricsException(CombinatoricsException.NEGATIVE, n);
250 }
251 throw new CombinatoricsException(CombinatoricsException.OUT_OF_RANGE, k, 0, n);
252 }
253 }
254
255 /**
256 * Check {@code n <= threshold}, or else throw an {@link ArithmeticException}.
257 *
258 * @param n N
259 * @param k K
260 * @param threshold Threshold for {@code n}
261 * @param msgFormat Error message format
262 * @throws ArithmeticException if overflow is expected to happen
263 */
264 private static void checkN(int n, int k, int threshold, String msgFormat) {
265 if (n > threshold) {
266 throw new ArithmeticException(String.format(msgFormat, n, k));
267 }
268 }
269
270 /**
271 * Return {@code a*b/4} without intermediate overflow.
272 * It is assumed that:
273 * <ul>
274 * <li>The coefficients a and b are positive
275 * <li>The product (a*b) is an exact multiple of 4
276 * <li>The result (a*b/4) is an exact integer that does not overflow a {@code long}
277 * </ul>
278 *
279 * <p>A conditional branch is performed on the odd/even property of {@code b}.
280 * The branch is predictable if {@code b} is typically the same parity.
281 *
282 * @param a Coefficient a
283 * @param b Coefficient b
284 * @return {@code a*b/4}
285 */
286 private static long productOver4(long a, long b) {
287 // Compute (a*b/4) without intermediate overflow.
288 // The product (a*b) must be an exact multiple of 4.
289 // If b is even: ((b/2) * a) / 2
290 // If b is odd then a must be even to make a*b even: ((a/2) * b) / 2
291 return (b & 1) == 0 ?
292 ((b >>> 1) * a) >>> 1 :
293 ((a >>> 1) * b) >>> 1;
294 }
295 }