1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.numbers.fraction;
18
19 import java.io.Serializable;
20 import org.apache.commons.numbers.core.ArithmeticUtils;
21 import org.apache.commons.numbers.core.NativeOperators;
22
23 /**
24 * Representation of a rational number.
25 *
26 * <p>The number is expressed as the quotient {@code p/q} of two 32-bit integers,
27 * a numerator {@code p} and a non-zero denominator {@code q}.
28 *
29 * <p>This class is immutable.
30 *
31 * <a href="https://en.wikipedia.org/wiki/Rational_number">Rational number</a>
32 */
33 public final class Fraction
34 extends Number
35 implements Comparable<Fraction>,
36 NativeOperators<Fraction>,
37 Serializable {
38 /** A fraction representing "0". */
39 public static final Fraction ZERO = new Fraction(0);
40
41 /** A fraction representing "1". */
42 public static final Fraction ONE = new Fraction(1);
43
44 /** Serializable version identifier. */
45 private static final long serialVersionUID = 20190701L;
46
47 /** The default epsilon used for convergence. */
48 private static final double DEFAULT_EPSILON = 1e-5;
49
50 /** The default iterations used for convergence. */
51 private static final int DEFAULT_MAX_ITERATIONS = 100;
52
53 /** Message for non-finite input double argument to factory constructors. */
54 private static final String NOT_FINITE = "Not finite: ";
55
56 /** The overflow limit for conversion from a double (2^31). */
57 private static final long OVERFLOW = 1L << 31;
58
59 /** The numerator of this fraction reduced to lowest terms. */
60 private final int numerator;
61
62 /** The denominator of this fraction reduced to lowest terms. */
63 private final int denominator;
64
65 /**
66 * Private constructor: Instances are created using factory methods.
67 *
68 * <p>This constructor should only be invoked when the fraction is known
69 * to be non-zero; otherwise use {@link #ZERO}. This avoids creating
70 * the zero representation {@code 0 / -1}.
71 *
72 * @param num Numerator.
73 * @param den Denominator.
74 * @throws ArithmeticException if the denominator is {@code zero}.
75 */
76 private Fraction(int num, int den) {
77 if (den == 0) {
78 throw new FractionException(FractionException.ERROR_ZERO_DENOMINATOR);
79 }
80
81 if (num == den) {
82 numerator = 1;
83 denominator = 1;
84 } else {
85 // Reduce numerator (p) and denominator (q) by greatest common divisor.
86 int p;
87 int q;
88
89 // If num and den are both 2^-31, or if one is 0 and the other is 2^-31,
90 // the calculation of the gcd below will fail. Ensure that this does not
91 // happen by dividing both by 2 in case both are even.
92 if (((num | den) & 1) == 0) {
93 p = num >> 1;
94 q = den >> 1;
95 } else {
96 p = num;
97 q = den;
98 }
99
100 // Will not throw.
101 // Cannot return 0 as gcd(0, 0) has been eliminated.
102 final int d = ArithmeticUtils.gcd(p, q);
103 numerator = p / d;
104 denominator = q / d;
105 }
106 }
107
108 /**
109 * Private constructor: Instances are created using factory methods.
110 *
111 * <p>This sets the denominator to 1.
112 *
113 * @param num Numerator.
114 */
115 private Fraction(int num) {
116 numerator = num;
117 denominator = 1;
118 }
119
120 /**
121 * Create a fraction given the double value and either the maximum error
122 * allowed or the maximum number of denominator digits.
123 *
124 * <p>
125 * NOTE: This constructor is called with:
126 * <ul>
127 * <li>EITHER a valid epsilon value and the maxDenominator set to
128 * Integer.MAX_VALUE (that way the maxDenominator has no effect)
129 * <li>OR a valid maxDenominator value and the epsilon value set to
130 * zero (that way epsilon only has effect if there is an exact
131 * match before the maxDenominator value is reached).
132 * </ul>
133 * <p>
134 * It has been done this way so that the same code can be reused for
135 * both scenarios. However this could be confusing to users if it
136 * were part of the public API and this method should therefore remain
137 * PRIVATE.
138 * </p>
139 *
140 * <p>
141 * See JIRA issue ticket MATH-181 for more details:
142 * https://issues.apache.org/jira/browse/MATH-181
143 * </p>
144 *
145 * <p>
146 * Warning: This conversion assumes the value is not zero.
147 * </p>
148 *
149 * @param value Value to convert to a fraction. Must not be zero.
150 * @param epsilon Maximum error allowed.
151 * The resulting fraction is within {@code epsilon} of {@code value},
152 * in absolute terms.
153 * @param maxDenominator Maximum denominator value allowed.
154 * @param maxIterations Maximum number of convergents.
155 * @throws IllegalArgumentException if the given {@code value} is NaN or infinite.
156 * @throws ArithmeticException if the continued fraction failed to converge.
157 */
158 private Fraction(final double value,
159 final double epsilon,
160 final int maxDenominator,
161 final int maxIterations) {
162 if (!Double.isFinite(value)) {
163 throw new IllegalArgumentException(NOT_FINITE + value);
164 }
165
166 // Remove sign, this is restored at the end.
167 // (Assumes the value is not zero and thus signum(value) is not zero).
168 final double absValue = Math.abs(value);
169 double r0 = absValue;
170 long a0 = (long) Math.floor(r0);
171 if (a0 > OVERFLOW) {
172 throw new FractionException(FractionException.ERROR_CONVERSION_OVERFLOW, value, a0, 1);
173 }
174
175 // check for (almost) integer arguments, which should not go to iterations.
176 if (r0 - a0 <= epsilon) {
177 int num = (int) a0;
178 int den = 1;
179 // Restore the sign.
180 if (Math.signum(num) != Math.signum(value)) {
181 if (num == Integer.MIN_VALUE) {
182 den = -den;
183 } else {
184 num = -num;
185 }
186 }
187 this.numerator = num;
188 this.denominator = den;
189 return;
190 }
191
192 // Support 2^31 as maximum denominator.
193 // This is negative as an integer so convert to long.
194 final long maxDen = Math.abs((long) maxDenominator);
195
196 long p0 = 1;
197 long q0 = 0;
198 long p1 = a0;
199 long q1 = 1;
200
201 long p2;
202 long q2;
203
204 int n = 0;
205 boolean stop = false;
206 do {
207 ++n;
208 final double r1 = 1.0 / (r0 - a0);
209 final long a1 = (long) Math.floor(r1);
210 p2 = (a1 * p1) + p0;
211 q2 = (a1 * q1) + q0;
212
213 if (Long.compareUnsigned(p2, OVERFLOW) > 0 ||
214 Long.compareUnsigned(q2, OVERFLOW) > 0) {
215 // In maxDenominator mode, fall-back to the previous valid fraction.
216 if (epsilon == 0.0) {
217 p2 = p1;
218 q2 = q1;
219 break;
220 }
221 throw new FractionException(FractionException.ERROR_CONVERSION_OVERFLOW, value, p2, q2);
222 }
223
224 final double convergent = (double) p2 / (double) q2;
225 if (n < maxIterations &&
226 Math.abs(convergent - absValue) > epsilon &&
227 q2 < maxDen) {
228 p0 = p1;
229 p1 = p2;
230 q0 = q1;
231 q1 = q2;
232 a0 = a1;
233 r0 = r1;
234 } else {
235 stop = true;
236 }
237 } while (!stop);
238
239 if (n >= maxIterations) {
240 throw new FractionException(FractionException.ERROR_CONVERSION, value, maxIterations);
241 }
242
243 // Use p2 / q2 or p1 / q1 if q2 has grown too large in maxDenominator mode
244 // Note: Conversion of long 2^31 to an integer will create a negative. This could
245 // be either the numerator or denominator. This is handled by restoring the sign.
246 int num;
247 int den;
248 if (q2 <= maxDen) {
249 num = (int) p2;
250 den = (int) q2;
251 } else {
252 num = (int) p1;
253 den = (int) q1;
254 }
255
256 // Restore the sign.
257 if (Math.signum(num) * Math.signum(den) != Math.signum(value)) {
258 if (num == Integer.MIN_VALUE) {
259 den = -den;
260 } else {
261 num = -num;
262 }
263 }
264
265 this.numerator = num;
266 this.denominator = den;
267 }
268
269 /**
270 * Create a fraction given the double value.
271 *
272 * @param value Value to convert to a fraction.
273 * @throws IllegalArgumentException if the given {@code value} is NaN or infinite.
274 * @throws ArithmeticException if the continued fraction failed to converge.
275 * @return a new instance.
276 */
277 public static Fraction from(final double value) {
278 return from(value, DEFAULT_EPSILON, DEFAULT_MAX_ITERATIONS);
279 }
280
281 /**
282 * Create a fraction given the double value and maximum error allowed.
283 *
284 * <p>
285 * References:
286 * <ul>
287 * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
288 * Continued Fraction</a> equations (11) and (22)-(26)</li>
289 * </ul>
290 *
291 * @param value Value to convert to a fraction.
292 * @param epsilon Maximum error allowed. The resulting fraction is within
293 * {@code epsilon} of {@code value}, in absolute terms.
294 * @param maxIterations Maximum number of convergents.
295 * @throws IllegalArgumentException if the given {@code value} is NaN or infinite;
296 * {@code epsilon} is not positive; or {@code maxIterations < 1}.
297 * @throws ArithmeticException if the continued fraction failed to converge.
298 * @return a new instance.
299 */
300 public static Fraction from(final double value,
301 final double epsilon,
302 final int maxIterations) {
303 if (value == 0) {
304 return ZERO;
305 }
306 if (maxIterations < 1) {
307 throw new IllegalArgumentException("Max iterations must be strictly positive: " + maxIterations);
308 }
309 if (epsilon >= 0) {
310 return new Fraction(value, epsilon, Integer.MIN_VALUE, maxIterations);
311 }
312 throw new IllegalArgumentException("Epsilon must be positive: " + maxIterations);
313 }
314
315 /**
316 * Create a fraction given the double value and maximum denominator.
317 *
318 * <p>
319 * References:
320 * <ul>
321 * <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
322 * Continued Fraction</a> equations (11) and (22)-(26)</li>
323 * </ul>
324 *
325 * <p>Note: The magnitude of the {@code maxDenominator} is used allowing use of
326 * {@link Integer#MIN_VALUE} for a supported maximum denominator of 2<sup>31</sup>.
327 *
328 * @param value Value to convert to a fraction.
329 * @param maxDenominator Maximum allowed value for denominator.
330 * @throws IllegalArgumentException if the given {@code value} is NaN or infinite
331 * or {@code maxDenominator} is zero.
332 * @throws ArithmeticException if the continued fraction failed to converge.
333 * @return a new instance.
334 */
335 public static Fraction from(final double value,
336 final int maxDenominator) {
337 if (value == 0) {
338 return ZERO;
339 }
340 if (maxDenominator == 0) {
341 // Re-use the zero denominator message
342 throw new IllegalArgumentException(FractionException.ERROR_ZERO_DENOMINATOR);
343 }
344 return new Fraction(value, 0, maxDenominator, DEFAULT_MAX_ITERATIONS);
345 }
346
347 /**
348 * Create a fraction given the numerator. The denominator is {@code 1}.
349 *
350 * @param num Numerator.
351 * @return a new instance.
352 */
353 public static Fraction of(final int num) {
354 if (num == 0) {
355 return ZERO;
356 }
357 return new Fraction(num);
358 }
359
360 /**
361 * Create a fraction given the numerator and denominator.
362 * The fraction is reduced to lowest terms.
363 *
364 * @param num Numerator.
365 * @param den Denominator.
366 * @throws ArithmeticException if the denominator is {@code zero}.
367 * @return a new instance.
368 */
369 public static Fraction of(final int num, final int den) {
370 if (num == 0) {
371 return ZERO;
372 }
373 return new Fraction(num, den);
374 }
375
376 /**
377 * Returns a {@code Fraction} instance representing the specified string {@code s}.
378 *
379 * <p>If {@code s} is {@code null}, then a {@code NullPointerException} is thrown.
380 *
381 * <p>The string must be in a format compatible with that produced by
382 * {@link #toString() Fraction.toString()}.
383 * The format expects an integer optionally followed by a {@code '/'} character and
384 * and second integer. Leading and trailing spaces are allowed around each numeric part.
385 * Each numeric part is parsed using {@link Integer#parseInt(String)}. The parts
386 * are interpreted as the numerator and optional denominator of the fraction. If absent
387 * the denominator is assumed to be "1".
388 *
389 * <p>Examples of valid strings and the equivalent {@code Fraction} are shown below:
390 *
391 * <pre>
392 * "0" = Fraction.of(0)
393 * "42" = Fraction.of(42)
394 * "0 / 1" = Fraction.of(0, 1)
395 * "1 / 3" = Fraction.of(1, 3)
396 * "-4 / 13" = Fraction.of(-4, 13)</pre>
397 *
398 * <p>Note: The fraction is returned in reduced form and the numerator and denominator
399 * may not match the values in the input string. For this reason the result of
400 * {@code Fraction.parse(s).toString().equals(s)} may not be {@code true}.
401 *
402 * @param s String representation.
403 * @return an instance.
404 * @throws NullPointerException if the string is null.
405 * @throws NumberFormatException if the string does not contain a parsable fraction.
406 * @see Integer#parseInt(String)
407 * @see #toString()
408 */
409 public static Fraction parse(String s) {
410 final String stripped = s.replace(",", "");
411 final int slashLoc = stripped.indexOf('/');
412 // if no slash, parse as single number
413 if (slashLoc == -1) {
414 return of(Integer.parseInt(stripped.trim()));
415 }
416 final int num = Integer.parseInt(stripped.substring(0, slashLoc).trim());
417 final int denom = Integer.parseInt(stripped.substring(slashLoc + 1).trim());
418 return of(num, denom);
419 }
420
421 @Override
422 public Fraction zero() {
423 return ZERO;
424 }
425
426 /** {@inheritDoc} */
427 @Override
428 public boolean isZero() {
429 return numerator == 0;
430 }
431
432 @Override
433 public Fraction one() {
434 return ONE;
435 }
436
437 /** {@inheritDoc} */
438 @Override
439 public boolean isOne() {
440 return numerator == denominator;
441 }
442
443 /**
444 * Access the numerator as an {@code int}.
445 *
446 * @return the numerator as an {@code int}.
447 */
448 public int getNumerator() {
449 return numerator;
450 }
451
452 /**
453 * Access the denominator as an {@code int}.
454 *
455 * @return the denominator as an {@code int}.
456 */
457 public int getDenominator() {
458 return denominator;
459 }
460
461 /**
462 * Retrieves the sign of this fraction.
463 *
464 * @return -1 if the value is strictly negative, 1 if it is strictly
465 * positive, 0 if it is 0.
466 */
467 public int signum() {
468 return Integer.signum(numerator) * Integer.signum(denominator);
469 }
470
471 /**
472 * Returns the absolute value of this fraction.
473 *
474 * @return the absolute value.
475 */
476 public Fraction abs() {
477 return signum() >= 0 ?
478 this :
479 negate();
480 }
481
482 @Override
483 public Fraction negate() {
484 return numerator == Integer.MIN_VALUE ?
485 new Fraction(numerator, -denominator) :
486 new Fraction(-numerator, denominator);
487 }
488
489 /**
490 * {@inheritDoc}
491 *
492 * <p>Raises an exception if the fraction is equal to zero.
493 *
494 * @throws ArithmeticException if the current numerator is {@code zero}
495 */
496 @Override
497 public Fraction reciprocal() {
498 return new Fraction(denominator, numerator);
499 }
500
501 /**
502 * Returns the {@code double} value closest to this fraction.
503 * This calculates the fraction as numerator divided by denominator.
504 *
505 * @return the fraction as a {@code double}.
506 */
507 @Override
508 public double doubleValue() {
509 return (double) numerator / (double) denominator;
510 }
511
512 /**
513 * Returns the {@code float} value closest to this fraction.
514 * This calculates the fraction as numerator divided by denominator.
515 *
516 * @return the fraction as a {@code float}.
517 */
518 @Override
519 public float floatValue() {
520 return (float) doubleValue();
521 }
522
523 /**
524 * Returns the whole number part of the fraction.
525 *
526 * @return the largest {@code int} value that is not larger than this fraction.
527 */
528 @Override
529 public int intValue() {
530 // Note: numerator / denominator fails for Integer.MIN_VALUE / -1.
531 // Casting the double value handles this case.
532 return (int) doubleValue();
533 }
534
535 /**
536 * Returns the whole number part of the fraction.
537 *
538 * @return the largest {@code long} value that is not larger than this fraction.
539 */
540 @Override
541 public long longValue() {
542 return (long) numerator / denominator;
543 }
544
545 /**
546 * Adds the specified {@code value} to this fraction, returning
547 * the result in reduced form.
548 *
549 * @param value Value to add.
550 * @return {@code this + value}.
551 * @throws ArithmeticException if the resulting numerator
552 * cannot be represented in an {@code int}.
553 */
554 public Fraction add(final int value) {
555 if (value == 0) {
556 return this;
557 }
558 if (isZero()) {
559 return new Fraction(value);
560 }
561 // Convert to numerator with same effective denominator
562 final long num = (long) value * denominator;
563 return of(Math.toIntExact(numerator + num), denominator);
564 }
565
566 /**
567 * Adds the specified {@code value} to this fraction, returning
568 * the result in reduced form.
569 *
570 * @param value Value to add.
571 * @return {@code this + value}.
572 * @throws ArithmeticException if the resulting numerator or denominator
573 * cannot be represented in an {@code int}.
574 */
575 @Override
576 public Fraction add(Fraction value) {
577 return addSub(value, true /* add */);
578 }
579
580 /**
581 * Subtracts the specified {@code value} from this fraction, returning
582 * the result in reduced form.
583 *
584 * @param value Value to subtract.
585 * @return {@code this - value}.
586 * @throws ArithmeticException if the resulting numerator
587 * cannot be represented in an {@code int}.
588 */
589 public Fraction subtract(final int value) {
590 if (value == 0) {
591 return this;
592 }
593 if (isZero()) {
594 // Special case for min value
595 return value == Integer.MIN_VALUE ?
596 new Fraction(Integer.MIN_VALUE, -1) :
597 new Fraction(-value);
598 }
599 // Convert to numerator with same effective denominator
600 final long num = (long) value * denominator;
601 return of(Math.toIntExact(numerator - num), denominator);
602 }
603
604 /**
605 * Subtracts the specified {@code value} from this fraction, returning
606 * the result in reduced form.
607 *
608 * @param value Value to subtract.
609 * @return {@code this - value}.
610 * @throws ArithmeticException if the resulting numerator or denominator
611 * cannot be represented in an {@code int}.
612 */
613 @Override
614 public Fraction subtract(Fraction value) {
615 return addSub(value, false /* subtract */);
616 }
617
618 /**
619 * Implements add and subtract using algorithm described in Knuth 4.5.1.
620 *
621 * @param value Fraction to add or subtract.
622 * @param isAdd Whether the operation is "add" or "subtract".
623 * @return a new instance.
624 * @throws ArithmeticException if the resulting numerator or denominator
625 * cannot be represented in an {@code int}.
626 */
627 private Fraction addSub(Fraction value, boolean isAdd) {
628 if (value.isZero()) {
629 return this;
630 }
631 // Zero is identity for addition.
632 if (isZero()) {
633 return isAdd ? value : value.negate();
634 }
635
636 /*
637 * Let the two fractions be u/u' and v/v', and d1 = gcd(u', v').
638 * First, compute t, defined as:
639 *
640 * t = u(v'/d1) +/- v(u'/d1)
641 */
642 final int d1 = ArithmeticUtils.gcd(denominator, value.denominator);
643 final long uvp = (long) numerator * (long) (value.denominator / d1);
644 final long upv = (long) value.numerator * (long) (denominator / d1);
645
646 /*
647 * The largest possible absolute value of a product of two ints is 2^62,
648 * which can only happen as a result of -2^31 * -2^31 = 2^62, so a
649 * product of -2^62 is not possible. It follows that (uvp - upv) cannot
650 * overflow, and (uvp + upv) could only overflow if uvp = upv = 2^62.
651 * But for this to happen, the terms u, v, v'/d1 and u'/d1 would all
652 * have to be -2^31, which is not possible because v'/d1 and u'/d1
653 * are necessarily coprime.
654 */
655 final long t = isAdd ? uvp + upv : uvp - upv;
656
657 /*
658 * Because u is coprime to u' and v is coprime to v', t is necessarily
659 * coprime to both v'/d1 and u'/d1. However, it might have a common
660 * factor with d1.
661 */
662 final long d2 = ArithmeticUtils.gcd(t, d1);
663 // result is (t/d2) / (u'/d1)(v'/d2)
664 return of(Math.toIntExact(t / d2),
665 Math.multiplyExact(denominator / d1,
666 value.denominator / (int) d2));
667 }
668
669 /**
670 * Multiply this fraction by the passed {@code value}, returning
671 * the result in reduced form.
672 *
673 * @param value Value to multiply by.
674 * @return {@code this * value}.
675 * @throws ArithmeticException if the resulting numerator
676 * cannot be represented in an {@code int}.
677 */
678 @Override
679 public Fraction multiply(final int value) {
680 if (value == 0 || isZero()) {
681 return ZERO;
682 }
683
684 // knuth 4.5.1
685 // Make sure we don't overflow unless the result *must* overflow.
686 // (see multiply(Fraction) using value / 1 as the argument).
687 final int d2 = ArithmeticUtils.gcd(value, denominator);
688 return new Fraction(Math.multiplyExact(numerator, value / d2),
689 denominator / d2);
690 }
691
692 /**
693 * Multiply this fraction by the passed {@code value}, returning
694 * the result in reduced form.
695 *
696 * @param value Value to multiply by.
697 * @return {@code this * value}.
698 * @throws ArithmeticException if the resulting numerator or denominator
699 * cannot be represented in an {@code int}.
700 */
701 @Override
702 public Fraction multiply(Fraction value) {
703 if (value.isZero() || isZero()) {
704 return ZERO;
705 }
706 return multiply(value.numerator, value.denominator);
707 }
708
709 /**
710 * Multiply this fraction by the passed fraction decomposed into a numerator and
711 * denominator, returning the result in reduced form.
712 *
713 * <p>This is a utility method to be used by multiply and divide. The decomposed
714 * fraction arguments and this fraction are not checked for zero.
715 *
716 * @param num Fraction numerator.
717 * @param den Fraction denominator.
718 * @return {@code this * num / den}.
719 * @throws ArithmeticException if the resulting numerator or denominator cannot
720 * be represented in an {@code int}.
721 */
722 private Fraction multiply(int num, int den) {
723 // knuth 4.5.1
724 // Make sure we don't overflow unless the result *must* overflow.
725 final int d1 = ArithmeticUtils.gcd(numerator, den);
726 final int d2 = ArithmeticUtils.gcd(num, denominator);
727 return new Fraction(Math.multiplyExact(numerator / d1, num / d2),
728 Math.multiplyExact(denominator / d2, den / d1));
729 }
730
731 /**
732 * Divide this fraction by the passed {@code value}, returning
733 * the result in reduced form.
734 *
735 * @param value Value to divide by
736 * @return {@code this / value}.
737 * @throws ArithmeticException if the value to divide by is zero
738 * or if the resulting numerator or denominator cannot be represented
739 * by an {@code int}.
740 */
741 public Fraction divide(final int value) {
742 if (value == 0) {
743 throw new FractionException(FractionException.ERROR_DIVIDE_BY_ZERO);
744 }
745 if (isZero()) {
746 return ZERO;
747 }
748 // Multiply by reciprocal
749
750 // knuth 4.5.1
751 // Make sure we don't overflow unless the result *must* overflow.
752 // (see multiply(Fraction) using 1 / value as the argument).
753 final int d1 = ArithmeticUtils.gcd(numerator, value);
754 return new Fraction(numerator / d1,
755 Math.multiplyExact(denominator, value / d1));
756 }
757
758 /**
759 * Divide this fraction by the passed {@code value}, returning
760 * the result in reduced form.
761 *
762 * @param value Value to divide by
763 * @return {@code this / value}.
764 * @throws ArithmeticException if the value to divide by is zero
765 * or if the resulting numerator or denominator cannot be represented
766 * by an {@code int}.
767 */
768 @Override
769 public Fraction divide(Fraction value) {
770 if (value.isZero()) {
771 throw new FractionException(FractionException.ERROR_DIVIDE_BY_ZERO);
772 }
773 if (isZero()) {
774 return ZERO;
775 }
776 // Multiply by reciprocal
777 return multiply(value.denominator, value.numerator);
778 }
779
780 /**
781 * Returns a {@code Fraction} whose value is
782 * <code>this<sup>exponent</sup></code>, returning the result in reduced form.
783 *
784 * @param exponent exponent to which this {@code Fraction} is to be raised.
785 * @return <code>this<sup>exponent</sup></code>.
786 * @throws ArithmeticException if the intermediate result would overflow.
787 */
788 @Override
789 public Fraction pow(final int exponent) {
790 if (exponent == 1) {
791 return this;
792 }
793 if (exponent == 0) {
794 return ONE;
795 }
796 if (isZero()) {
797 if (exponent < 0) {
798 throw new FractionException(FractionException.ERROR_ZERO_DENOMINATOR);
799 }
800 return ZERO;
801 }
802 if (exponent > 0) {
803 return new Fraction(ArithmeticUtils.pow(numerator, exponent),
804 ArithmeticUtils.pow(denominator, exponent));
805 }
806 if (exponent == -1) {
807 return this.reciprocal();
808 }
809 if (exponent == Integer.MIN_VALUE) {
810 // MIN_VALUE can't be negated
811 return new Fraction(ArithmeticUtils.pow(denominator, Integer.MAX_VALUE) * denominator,
812 ArithmeticUtils.pow(numerator, Integer.MAX_VALUE) * numerator);
813 }
814 return new Fraction(ArithmeticUtils.pow(denominator, -exponent),
815 ArithmeticUtils.pow(numerator, -exponent));
816 }
817
818 /**
819 * Returns the {@code String} representing this fraction.
820 * Uses:
821 * <ul>
822 * <li>{@code "0"} if {@code numerator} is zero.
823 * <li>{@code "numerator"} if {@code denominator} is one.
824 * <li>{@code "numerator / denominator"} for all other cases.
825 * </ul>
826 *
827 * @return a string representation of the fraction.
828 */
829 @Override
830 public String toString() {
831 final String str;
832 if (isZero()) {
833 str = "0";
834 } else if (denominator == 1) {
835 str = Integer.toString(numerator);
836 } else {
837 str = numerator + " / " + denominator;
838 }
839 return str;
840 }
841
842 /**
843 * Compares this object with the specified object for order using the signed magnitude.
844 *
845 * @param other {@inheritDoc}
846 * @return {@inheritDoc}
847 */
848 @Override
849 public int compareTo(Fraction other) {
850 // Compute the sign of each part
851 final int lns = Integer.signum(numerator);
852 final int lds = Integer.signum(denominator);
853 final int rns = Integer.signum(other.numerator);
854 final int rds = Integer.signum(other.denominator);
855
856 final int lhsSigNum = lns * lds;
857 final int rhsSigNum = rns * rds;
858
859 if (lhsSigNum != rhsSigNum) {
860 return (lhsSigNum > rhsSigNum) ? 1 : -1;
861 }
862 // Same sign.
863 // Avoid a multiply if both fractions are zero
864 if (lhsSigNum == 0) {
865 return 0;
866 }
867 // Compare absolute magnitude.
868 // Multiplication by the signum is equal to the absolute.
869 final long nOd = ((long) numerator) * lns * other.denominator * rds;
870 final long dOn = ((long) denominator) * lds * other.numerator * rns;
871 return Long.compare(nOd, dOn);
872 }
873
874 /**
875 * Test for equality with another object. If the other object is a {@code Fraction} then a
876 * comparison is made of the sign and magnitude; otherwise {@code false} is returned.
877 *
878 * @param other {@inheritDoc}
879 * @return {@inheritDoc}
880 */
881 @Override
882 public boolean equals(Object other) {
883 if (this == other) {
884 return true;
885 }
886
887 if (other instanceof Fraction) {
888 // Since fractions are always in lowest terms, numerators and
889 // denominators can be compared directly for equality.
890 final Fraction rhs = (Fraction) other;
891 if (signum() == rhs.signum()) {
892 return Math.abs(numerator) == Math.abs(rhs.numerator) &&
893 Math.abs(denominator) == Math.abs(rhs.denominator);
894 }
895 }
896
897 return false;
898 }
899
900 @Override
901 public int hashCode() {
902 // Incorporate the sign and absolute values of the numerator and denominator.
903 // Equivalent to:
904 // int hash = 1;
905 // hash = 31 * hash + Math.abs(numerator);
906 // hash = 31 * hash + Math.abs(denominator);
907 // hash = hash * signum()
908 // Note: x * Integer.signum(x) == Math.abs(x).
909 final int numS = Integer.signum(numerator);
910 final int denS = Integer.signum(denominator);
911 return (31 * (31 + numerator * numS) + denominator * denS) * numS * denS;
912 }
913 }