Class RegularizedBeta

    • Method Detail

      • value

        public static double value​(double x,
                                   double a,
                                   double b)
        Computes the value of the regularized beta function I(x, a, b).

        \[ I_x(a,b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]

        where \( B(a, b) \) is the beta function.

        Parameters:
        x - Value.
        a - Parameter a.
        b - Parameter b.
        Returns:
        the regularized beta function \( I_x(a, b) \).
        Throws:
        ArithmeticException - if the series evaluation fails to converge.
      • value

        public static double value​(double x,
                                   double a,
                                   double b,
                                   double epsilon,
                                   int maxIterations)
        Computes the value of the regularized beta function I(x, a, b).

        \[ I_x(a,b) = \frac{1}{B(a, b)} \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt \]

        where \( B(a, b) \) is the beta function.

        Parameters:
        x - the value.
        a - Parameter a.
        b - Parameter b.
        epsilon - Tolerance in series evaluation.
        maxIterations - Maximum number of iterations in series evaluation.
        Returns:
        the regularized beta function \( I_x(a, b) \).
        Throws:
        ArithmeticException - if the series evaluation fails to converge.
      • complement

        public static double complement​(double x,
                                        double a,
                                        double b)
        Computes the complement of the regularized beta function I(x, a, b).

        \[ 1 - I_x(a,b) = I_{1-x}(b, a) \]

        Parameters:
        x - Value.
        a - Parameter a.
        b - Parameter b.
        Returns:
        the complement of the regularized beta function \( 1 - I_x(a, b) \).
        Throws:
        ArithmeticException - if the series evaluation fails to converge.
        Since:
        1.1
      • complement

        public static double complement​(double x,
                                        double a,
                                        double b,
                                        double epsilon,
                                        int maxIterations)
        Computes the complement of the regularized beta function I(x, a, b).

        \[ 1 - I_x(a,b) = I_{1-x}(b, a) \]

        Parameters:
        x - the value.
        a - Parameter a.
        b - Parameter b.
        epsilon - Tolerance in series evaluation.
        maxIterations - Maximum number of iterations in series evaluation.
        Returns:
        the complement of the regularized beta function \( 1 - I_x(a, b) \).
        Throws:
        ArithmeticException - if the series evaluation fails to converge.
        Since:
        1.1
      • derivative

        public static double derivative​(double x,
                                        double a,
                                        double b)
        Computes the derivative of the regularized beta function I(x, a, b).

        \[ \frac{\delta}{\delta x} I_x(a,b) = \frac{(1-x)^{b-1} x^{a-1}}{B(a, b)} \]

        where \( B(a, b) \) is the beta function.

        This function has uses in some statistical distributions.

        Parameters:
        x - Value.
        a - Parameter a.
        b - Parameter b.
        Returns:
        the derivative of the regularized beta function \( I_x(a, b) \).
        Throws:
        ArithmeticException - if the series evaluation fails to converge.
        Since:
        1.1