1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.numbers.gamma; 18 19 /** 20 * <a href="http://en.wikipedia.org/wiki/Digamma_function">Digamma function</a>. 21 * <p> 22 * It is defined as the logarithmic derivative of the \( \Gamma \) 23 * ({@link Gamma}) function: 24 * \( \frac{d}{dx}(\ln \Gamma(x)) = \frac{\Gamma^\prime(x)}{\Gamma(x)} \). 25 * </p> 26 * 27 * @see Gamma 28 */ 29 public final class Digamma { 30 /** <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant</a>. */ 31 private static final double GAMMA = 0.577215664901532860606512090082; 32 33 /** C limit. */ 34 private static final double C_LIMIT = 49; 35 /** S limit. */ 36 private static final double S_LIMIT = 1e-5; 37 /** Fraction. */ 38 private static final double F_M1_12 = -1d / 12; 39 /** Fraction. */ 40 private static final double F_1_120 = 1d / 120; 41 /** Fraction. */ 42 private static final double F_M1_252 = -1d / 252; 43 44 /** Private constructor. */ 45 private Digamma() { 46 // intentionally empty. 47 } 48 49 /** 50 * Computes the digamma function. 51 * 52 * This is an independently written implementation of the algorithm described in 53 * <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf">Jose Bernardo, 54 * Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976</a>. 55 * A <a href="https://en.wikipedia.org/wiki/Digamma_function#Reflection_formula"> 56 * reflection formula</a> is incorporated to improve performance on negative values. 57 * 58 * Some of the constants have been changed to increase accuracy at the moderate 59 * expense of run-time. The result should be accurate to within {@code 1e-8}. 60 * relative tolerance for {@code 0 < x < 1e-5} and within {@code 1e-8} absolute 61 * tolerance otherwise. 62 * 63 * @param x Argument. 64 * @return digamma(x) to within {@code 1e-8} relative or absolute error whichever 65 * is larger. 66 */ 67 public static double value(double x) { 68 if (!Double.isFinite(x)) { 69 return x; 70 } 71 72 double digamma = 0; 73 if (x < 0) { 74 // Use reflection formula to fall back into positive values. 75 digamma -= Math.PI / Math.tan(Math.PI * x); 76 x = 1 - x; 77 } 78 79 if (x > 0 && x <= S_LIMIT) { 80 // Use method 5 from Bernardo AS103, accurate to O(x). 81 return digamma - GAMMA - 1 / x; 82 } 83 84 while (x < C_LIMIT) { 85 digamma -= 1 / x; 86 x += 1; 87 } 88 89 // Use method 4, accurate to O(1/x^8) 90 final double inv = 1 / (x * x); 91 // 1 1 1 1 92 // log(x) - --- - ------ + ------- - ------- 93 // 2 x 12 x^2 120 x^4 252 x^6 94 digamma += Math.log(x) - 0.5 / x + inv * (F_M1_12 + inv * (F_1_120 + F_M1_252 * inv)); 95 96 return digamma; 97 } 98 }