View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.rng.sampling.distribution;
18  
19  import org.apache.commons.rng.UniformRandomProvider;
20  
21  /**
22   * <a href="https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform">
23   * Box-Muller algorithm</a> for sampling from Gaussian distribution with
24   * mean 0 and standard deviation 1.
25   *
26   * <p>Sampling uses:</p>
27   *
28   * <ul>
29   *   <li>{@link UniformRandomProvider#nextDouble()}
30   *   <li>{@link UniformRandomProvider#nextLong()}
31   * </ul>
32   *
33   * @since 1.1
34   */
35  public class BoxMullerNormalizedGaussianSampler
36      implements NormalizedGaussianSampler, SharedStateContinuousSampler {
37      /** Next gaussian. */
38      private double nextGaussian = Double.NaN;
39      /** Underlying source of randomness. */
40      private final UniformRandomProvider rng;
41  
42      /**
43       * Create an instance.
44       *
45       * @param rng Generator of uniformly distributed random numbers.
46       */
47      public BoxMullerNormalizedGaussianSampler(UniformRandomProvider rng) {
48          this.rng = rng;
49      }
50  
51      /** {@inheritDoc} */
52      @Override
53      public double sample() {
54          final double random;
55          if (Double.isNaN(nextGaussian)) {
56              // Generate a pair of Gaussian numbers.
57  
58              // Avoid zero for the uniform deviate y.
59              // The extreme tail of the sample is:
60              // y = 2^-53
61              // r = 8.57167
62              final double x = rng.nextDouble();
63              final double y = InternalUtils.makeNonZeroDouble(rng.nextLong());
64              final double alpha = 2 * Math.PI * x;
65              final double r = Math.sqrt(-2 * Math.log(y));
66  
67              // Return the first element of the generated pair.
68              random = r * Math.cos(alpha);
69  
70              // Keep second element of the pair for next invocation.
71              nextGaussian = r * Math.sin(alpha);
72          } else {
73              // Use the second element of the pair (generated at the
74              // previous invocation).
75              random = nextGaussian;
76  
77              // Both elements of the pair have been used.
78              nextGaussian = Double.NaN;
79          }
80  
81          return random;
82      }
83  
84      /** {@inheritDoc} */
85      @Override
86      public String toString() {
87          return "Box-Muller normalized Gaussian deviate [" + rng.toString() + "]";
88      }
89  
90      /**
91       * {@inheritDoc}
92       *
93       * @since 1.3
94       */
95      @Override
96      public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
97          return new BoxMullerNormalizedGaussianSampler(rng);
98      }
99  
100     /**
101      * Create a new normalised Gaussian sampler.
102      *
103      * @param <S> Sampler type.
104      * @param rng Generator of uniformly distributed random numbers.
105      * @return the sampler
106      * @since 1.3
107      */
108     @SuppressWarnings("unchecked")
109     public static <S extends NormalizedGaussianSampler & SharedStateContinuousSampler> S
110             of(UniformRandomProvider rng) {
111         return (S) new BoxMullerNormalizedGaussianSampler(rng);
112     }
113 }