1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.rng.core.source32;
18
19 import java.util.Arrays;
20 import org.apache.commons.rng.core.util.NumberFactory;
21
22 /**
23 * This abstract class implements the WELL class of pseudo-random number
24 * generator from François Panneton, Pierre L'Ecuyer and Makoto
25 * Matsumoto.
26 * <p>
27 * This generator is described in a paper by François Panneton,
28 * Pierre L'Ecuyer and Makoto Matsumoto
29 * <a href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf">
30 * Improved Long-Period Generators Based on Linear Recurrences Modulo 2</a>
31 * ACM Transactions on Mathematical Software, 32, 1 (2006).
32 * The errata for the paper are in
33 * <a href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng-errata.txt">wellrng-errata.txt</a>.
34 * </p>
35 *
36 * @see <a href="http://www.iro.umontreal.ca/~panneton/WELLRNG.html">WELL Random number generator</a>
37 *
38 * @since 1.0
39 */
40 public abstract class AbstractWell extends IntProvider {
41 /** Block size. */
42 private static final int BLOCK_SIZE = 32;
43 /** Current index in the bytes pool. */
44 protected int index;
45 /** Bytes pool. */
46 protected final int[] v;
47
48 /**
49 * Creates an instance with the given {@code seed}.
50 *
51 * @param k Number of bits in the pool (not necessarily a multiple of 32).
52 * @param seed Initial seed.
53 */
54 protected AbstractWell(final int k,
55 final int[] seed) {
56 final int r = calculateBlockCount(k);
57 v = new int[r];
58 index = 0;
59
60 // Initialize the pool content.
61 setSeedInternal(seed);
62 }
63
64 /** {@inheritDoc} */
65 @Override
66 protected byte[] getStateInternal() {
67 final int[] s = Arrays.copyOf(v, v.length + 1);
68 s[v.length] = index;
69
70 return composeStateInternal(NumberFactory.makeByteArray(s),
71 super.getStateInternal());
72 }
73
74 /** {@inheritDoc} */
75 @Override
76 protected void setStateInternal(byte[] s) {
77 final byte[][] c = splitStateInternal(s, (v.length + 1) * 4);
78
79 final int[] tmp = NumberFactory.makeIntArray(c[0]);
80 System.arraycopy(tmp, 0, v, 0, v.length);
81 index = tmp[v.length];
82
83 super.setStateInternal(c[1]);
84 }
85
86 /**
87 * Initializes the generator with the given {@code seed}.
88 *
89 * @param seed Seed. Cannot be null.
90 */
91 private void setSeedInternal(final int[] seed) {
92 System.arraycopy(seed, 0, v, 0, Math.min(seed.length, v.length));
93
94 if (seed.length < v.length) {
95 for (int i = seed.length; i < v.length; ++i) {
96 final long current = v[i - seed.length];
97 v[i] = (int) ((1812433253L * (current ^ (current >> 30)) + i) & 0xffffffffL);
98 }
99 }
100
101 index = 0;
102 }
103
104 /**
105 * Calculate the number of 32-bits blocks.
106 *
107 * @param k Number of bits in the pool (not necessarily a multiple of 32).
108 * @return the number of 32-bits blocks.
109 */
110 private static int calculateBlockCount(final int k) {
111 // The bits pool contains k bits, k = r w - p where r is the number
112 // of w bits blocks, w is the block size (always 32 in the original paper)
113 // and p is the number of unused bits in the last block.
114 return (k + BLOCK_SIZE - 1) / BLOCK_SIZE;
115 }
116
117 /**
118 * Inner class used to store the indirection index table which is fixed for a given
119 * type of WELL class of pseudo-random number generator.
120 */
121 protected static final class IndexTable {
122 /** Index indirection table giving for each index its predecessor taking table size into account. */
123 private final int[] iRm1;
124 /** Index indirection table giving for each index its second predecessor taking table size into account. */
125 private final int[] iRm2;
126 /** Index indirection table giving for each index the value index + m1 taking table size into account. */
127 private final int[] i1;
128 /** Index indirection table giving for each index the value index + m2 taking table size into account. */
129 private final int[] i2;
130 /** Index indirection table giving for each index the value index + m3 taking table size into account. */
131 private final int[] i3;
132
133 /** Creates a new pre-calculated indirection index table.
134 * @param k number of bits in the pool (not necessarily a multiple of 32)
135 * @param m1 first parameter of the algorithm
136 * @param m2 second parameter of the algorithm
137 * @param m3 third parameter of the algorithm
138 */
139 public IndexTable(final int k, final int m1, final int m2, final int m3) {
140
141 final int r = calculateBlockCount(k);
142
143 // precompute indirection index tables. These tables are used for optimizing access
144 // they allow saving computations like "(j + r - 2) % r" with costly modulo operations
145 iRm1 = new int[r];
146 iRm2 = new int[r];
147 i1 = new int[r];
148 i2 = new int[r];
149 i3 = new int[r];
150 for (int j = 0; j < r; ++j) {
151 iRm1[j] = (j + r - 1) % r;
152 iRm2[j] = (j + r - 2) % r;
153 i1[j] = (j + m1) % r;
154 i2[j] = (j + m2) % r;
155 i3[j] = (j + m3) % r;
156 }
157 }
158
159 /**
160 * Returns the predecessor of the given index modulo the table size.
161 * @param index the index to look at
162 * @return (index - 1) % table size
163 */
164 public int getIndexPred(final int index) {
165 return iRm1[index];
166 }
167
168 /**
169 * Returns the second predecessor of the given index modulo the table size.
170 * @param index the index to look at
171 * @return (index - 2) % table size
172 */
173 public int getIndexPred2(final int index) {
174 return iRm2[index];
175 }
176
177 /**
178 * Returns index + M1 modulo the table size.
179 * @param index the index to look at
180 * @return (index + M1) % table size
181 */
182 public int getIndexM1(final int index) {
183 return i1[index];
184 }
185
186 /**
187 * Returns index + M2 modulo the table size.
188 * @param index the index to look at
189 * @return (index + M2) % table size
190 */
191 public int getIndexM2(final int index) {
192 return i2[index];
193 }
194
195 /**
196 * Returns index + M3 modulo the table size.
197 * @param index the index to look at
198 * @return (index + M3) % table size
199 */
200 public int getIndexM3(final int index) {
201 return i3[index];
202 }
203 }
204 }