1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.rng.sampling.distribution;
18
19 import org.apache.commons.rng.UniformRandomProvider;
20
21 /**
22 * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson
23 * distribution</a>.
24 *
25 * <ul>
26 * <li>
27 * Kemp, A, W, (1981) Efficient Generation of Logarithmically Distributed
28 * Pseudo-Random Variables. Journal of the Royal Statistical Society. Vol. 30, No. 3, pp.
29 * 249-253.
30 * </li>
31 * </ul>
32 *
33 * <p>This sampler is suitable for {@code mean < 40}. For large means,
34 * {@link LargeMeanPoissonSampler} should be used instead.</p>
35 *
36 * <p>Note: The algorithm uses a recurrence relation to compute the Poisson probability
37 * and a rolling summation for the cumulative probability. When the mean is large the
38 * initial probability (Math.exp(-mean)) is zero and an exception is raised by the
39 * constructor.</p>
40 *
41 * <p>Sampling uses 1 call to {@link UniformRandomProvider#nextDouble()}. This method provides
42 * an alternative to the {@link SmallMeanPoissonSampler} for slow generators of {@code double}.</p>
43 *
44 * @see <a href="https://www.jstor.org/stable/2346348">Kemp, A.W. (1981) JRSS Vol. 30, pp.
45 * 249-253</a>
46 * @since 1.3
47 */
48 public final class KempSmallMeanPoissonSampler
49 implements SharedStateDiscreteSampler {
50 /** Underlying source of randomness. */
51 private final UniformRandomProvider rng;
52 /**
53 * Pre-compute {@code Math.exp(-mean)}.
54 * Note: This is the probability of the Poisson sample {@code p(x=0)}.
55 */
56 private final double p0;
57 /**
58 * The mean of the Poisson sample.
59 */
60 private final double mean;
61
62 /**
63 * @param rng Generator of uniformly distributed random numbers.
64 * @param p0 Probability of the Poisson sample {@code p(x=0)}.
65 * @param mean Mean.
66 */
67 private KempSmallMeanPoissonSampler(UniformRandomProvider rng,
68 double p0,
69 double mean) {
70 this.rng = rng;
71 this.p0 = p0;
72 this.mean = mean;
73 }
74
75 /** {@inheritDoc} */
76 @Override
77 public int sample() {
78 // Note on the algorithm:
79 // - X is the unknown sample deviate (the output of the algorithm)
80 // - x is the current value from the distribution
81 // - p is the probability of the current value x, p(X=x)
82 // - u is effectively the cumulative probability that the sample X
83 // is equal or above the current value x, p(X>=x)
84 // So if p(X>=x) > p(X=x) the sample must be above x, otherwise it is x
85 double u = rng.nextDouble();
86 int x = 0;
87 double p = p0;
88 while (u > p) {
89 u -= p;
90 // Compute the next probability using a recurrence relation.
91 // p(x+1) = p(x) * mean / (x+1)
92 p *= mean / ++x;
93 // The algorithm listed in Kemp (1981) does not check that the rolling probability
94 // is positive. This check is added to ensure no errors when the limit of the summation
95 // 1 - sum(p(x)) is above 0 due to cumulative error in floating point arithmetic.
96 if (p == 0) {
97 return x;
98 }
99 }
100 return x;
101 }
102
103 /** {@inheritDoc} */
104 @Override
105 public String toString() {
106 return "Kemp Small Mean Poisson deviate [" + rng.toString() + "]";
107 }
108
109 /** {@inheritDoc} */
110 @Override
111 public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
112 return new KempSmallMeanPoissonSampler(rng, p0, mean);
113 }
114
115 /**
116 * Creates a new sampler for the Poisson distribution.
117 *
118 * @param rng Generator of uniformly distributed random numbers.
119 * @param mean Mean of the distribution.
120 * @return the sampler
121 * @throws IllegalArgumentException if {@code mean <= 0} or
122 * {@code Math.exp(-mean) == 0}.
123 */
124 public static SharedStateDiscreteSampler of(UniformRandomProvider rng,
125 double mean) {
126 InternalUtils.requireStrictlyPositive(mean, "mean");
127
128 final double p0 = Math.exp(-mean);
129
130 // Probability must be positive. As mean increases then p(0) decreases.
131 if (p0 > 0) {
132 return new KempSmallMeanPoissonSampler(rng, p0, mean);
133 }
134
135 // This catches the edge case of a NaN mean
136 throw new IllegalArgumentException("No probability for mean: " + mean);
137 }
138 }