1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.rng.sampling.distribution; 18 19 import org.apache.commons.rng.UniformRandomProvider; 20 21 /** 22 * Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>. 23 * 24 * <ul> 25 * <li> 26 * For small means, a Poisson process is simulated using uniform deviates, as described in 27 * <blockquote> 28 * Knuth (1969). <i>Seminumerical Algorithms</i>. The Art of Computer Programming, 29 * Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution. 30 * Addison Wesley. 31 * </blockquote> 32 * The Poisson process (and hence, the returned value) is bounded by {@code 1000 * mean}. 33 * </li> 34 * <li> 35 * For large means, we use the rejection algorithm described in 36 * <blockquote> 37 * Devroye, Luc. (1981). <i>The Computer Generation of Poisson Random Variables</i><br> 38 * <strong>Computing</strong> vol. 26 pp. 197-207. 39 * </blockquote> 40 * </li> 41 * </ul> 42 * 43 * <p>Sampling uses:</p> 44 * 45 * <ul> 46 * <li>{@link UniformRandomProvider#nextDouble()} 47 * <li>{@link UniformRandomProvider#nextLong()} (large means only) 48 * </ul> 49 * 50 * @since 1.0 51 */ 52 public class PoissonSampler 53 extends SamplerBase 54 implements SharedStateDiscreteSampler { 55 56 /** 57 * Value for switching sampling algorithm. 58 * 59 * <p>Package scope for the {@link PoissonSamplerCache}. 60 */ 61 static final double PIVOT = 40; 62 /** The internal Poisson sampler. */ 63 private final SharedStateDiscreteSampler poissonSamplerDelegate; 64 65 /** 66 * This instance delegates sampling. Use the factory method 67 * {@link #of(UniformRandomProvider, double)} to create an optimal sampler. 68 * 69 * @param rng Generator of uniformly distributed random numbers. 70 * @param mean Mean. 71 * @throws IllegalArgumentException if {@code mean <= 0} or {@code mean > 0.5 *} 72 * {@link Integer#MAX_VALUE}. 73 */ 74 public PoissonSampler(UniformRandomProvider rng, 75 double mean) { 76 // Delegate all work to specialised samplers. 77 this(of(rng, mean)); 78 } 79 80 /** 81 * @param delegate Poisson sampler. 82 */ 83 private PoissonSampler(SharedStateDiscreteSampler delegate) { 84 super(null); 85 poissonSamplerDelegate = delegate; 86 } 87 88 /** {@inheritDoc} */ 89 @Override 90 public int sample() { 91 return poissonSamplerDelegate.sample(); 92 } 93 94 /** {@inheritDoc} */ 95 @Override 96 public String toString() { 97 return poissonSamplerDelegate.toString(); 98 } 99 100 /** 101 * {@inheritDoc} 102 * 103 * @since 1.3 104 */ 105 @Override 106 public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) { 107 // Direct return of the optimised sampler 108 return poissonSamplerDelegate.withUniformRandomProvider(rng); 109 } 110 111 /** 112 * Creates a new Poisson distribution sampler. 113 * 114 * @param rng Generator of uniformly distributed random numbers. 115 * @param mean Mean. 116 * @return the sampler 117 * @throws IllegalArgumentException if {@code mean <= 0} or {@code mean > 0.5 *} 118 * {@link Integer#MAX_VALUE}. 119 * @since 1.3 120 */ 121 public static SharedStateDiscreteSampler of(UniformRandomProvider rng, 122 double mean) { 123 // Each sampler should check the input arguments. 124 return mean < PIVOT ? 125 SmallMeanPoissonSampler.of(rng, mean) : 126 LargeMeanPoissonSampler.of(rng, mean); 127 } 128 }