View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.rng.sampling.distribution;
19  
20  import org.apache.commons.rng.UniformRandomProvider;
21  
22  /**
23   * Implementation of the <a href="https://en.wikipedia.org/wiki/Zipf's_law">Zipf distribution</a>.
24   *
25   * <p>Sampling uses {@link UniformRandomProvider#nextDouble()}.</p>
26   *
27   * @since 1.0
28   */
29  public class RejectionInversionZipfSampler
30      extends SamplerBase
31      implements SharedStateDiscreteSampler {
32  
33      /** The implementation of the sample method. */
34      private final SharedStateDiscreteSampler delegate;
35  
36      /**
37       * Implements the rejection-inversion method for the Zipf distribution.
38       */
39      private static final class RejectionInversionZipfSamplerImpl implements SharedStateDiscreteSampler {
40          /** Threshold below which Taylor series will be used. */
41          private static final double TAYLOR_THRESHOLD = 1e-8;
42          /** 1/2. */
43          private static final double F_1_2 = 0.5;
44          /** 1/3. */
45          private static final double F_1_3 = 1d / 3;
46          /** 1/4. */
47          private static final double F_1_4 = 0.25;
48          /** Number of elements. */
49          private final int numberOfElements;
50          /** Exponent parameter of the distribution. */
51          private final double exponent;
52          /** {@code hIntegral(1.5) - 1}. */
53          private final double hIntegralX1;
54          /** {@code hIntegral(numberOfElements + 0.5)}. */
55          private final double hIntegralNumberOfElements;
56          /** {@code hIntegralX1 - hIntegralNumberOfElements}. */
57          private final double r;
58          /** {@code 2 - hIntegralInverse(hIntegral(2.5) - h(2)}. */
59          private final double s;
60          /** Underlying source of randomness. */
61          private final UniformRandomProvider rng;
62  
63          /**
64           * @param rng Generator of uniformly distributed random numbers.
65           * @param numberOfElements Number of elements (must be {@code > 0}).
66           * @param exponent Exponent (must be {@code > 0}).
67           */
68          RejectionInversionZipfSamplerImpl(UniformRandomProvider rng,
69                                            int numberOfElements,
70                                            double exponent) {
71              this.rng = rng;
72              this.numberOfElements = numberOfElements;
73              this.exponent = exponent;
74              this.hIntegralX1 = hIntegral(1.5) - 1;
75              this.hIntegralNumberOfElements = hIntegral(numberOfElements + F_1_2);
76              this.r = hIntegralX1 - hIntegralNumberOfElements;
77              this.s = 2 - hIntegralInverse(hIntegral(2.5) - h(2));
78          }
79  
80          /**
81           * @param rng Generator of uniformly distributed random numbers.
82           * @param source Source to copy.
83           */
84          private RejectionInversionZipfSamplerImpl(UniformRandomProvider rng,
85                                                    RejectionInversionZipfSamplerImpl source) {
86              this.rng = rng;
87              this.numberOfElements = source.numberOfElements;
88              this.exponent = source.exponent;
89              this.hIntegralX1 = source.hIntegralX1;
90              this.hIntegralNumberOfElements = source.hIntegralNumberOfElements;
91              this.r = source.r;
92              this.s = source.s;
93          }
94  
95          @Override
96          public int sample() {
97              // The paper describes an algorithm for exponents larger than 1
98              // (Algorithm ZRI).
99              // The original method uses
100             //   H(x) = (v + x)^(1 - q) / (1 - q)
101             // as the integral of the hat function.
102             // This function is undefined for q = 1, which is the reason for
103             // the limitation of the exponent.
104             // If instead the integral function
105             //   H(x) = ((v + x)^(1 - q) - 1) / (1 - q)
106             // is used,
107             // for which a meaningful limit exists for q = 1, the method works
108             // for all positive exponents.
109             // The following implementation uses v = 0 and generates integral
110             // number in the range [1, numberOfElements].
111             // This is different to the original method where v is defined to
112             // be positive and numbers are taken from [0, i_max].
113             // This explains why the implementation looks slightly different.
114 
115             while (true) {
116                 final double u = hIntegralNumberOfElements + rng.nextDouble() * r;
117                 // u is uniformly distributed in (hIntegralX1, hIntegralNumberOfElements]
118 
119                 final double x = hIntegralInverse(u);
120                 int k = (int) (x + F_1_2);
121 
122                 // Limit k to the range [1, numberOfElements] if it would be outside
123                 // due to numerical inaccuracies.
124                 if (k < 1) {
125                     k = 1;
126                 } else if (k > numberOfElements) {
127                     k = numberOfElements;
128                 }
129 
130                 // Here, the distribution of k is given by:
131                 //
132                 //   P(k = 1) = C * (hIntegral(1.5) - hIntegralX1) = C
133                 //   P(k = m) = C * (hIntegral(m + 1/2) - hIntegral(m - 1/2)) for m >= 2
134                 //
135                 //   where C = 1 / (hIntegralNumberOfElements - hIntegralX1)
136 
137                 if (k - x <= s || u >= hIntegral(k + F_1_2) - h(k)) {
138 
139                     // Case k = 1:
140                     //
141                     //   The right inequality is always true, because replacing k by 1 gives
142                     //   u >= hIntegral(1.5) - h(1) = hIntegralX1 and u is taken from
143                     //   (hIntegralX1, hIntegralNumberOfElements].
144                     //
145                     //   Therefore, the acceptance rate for k = 1 is P(accepted | k = 1) = 1
146                     //   and the probability that 1 is returned as random value is
147                     //   P(k = 1 and accepted) = P(accepted | k = 1) * P(k = 1) = C = C / 1^exponent
148                     //
149                     // Case k >= 2:
150                     //
151                     //   The left inequality (k - x <= s) is just a short cut
152                     //   to avoid the more expensive evaluation of the right inequality
153                     //   (u >= hIntegral(k + 0.5) - h(k)) in many cases.
154                     //
155                     //   If the left inequality is true, the right inequality is also true:
156                     //     Theorem 2 in the paper is valid for all positive exponents, because
157                     //     the requirements h'(x) = -exponent/x^(exponent + 1) < 0 and
158                     //     (-1/hInverse'(x))'' = (1+1/exponent) * x^(1/exponent-1) >= 0
159                     //     are both fulfilled.
160                     //     Therefore, f(x) = x - hIntegralInverse(hIntegral(x + 0.5) - h(x))
161                     //     is a non-decreasing function. If k - x <= s holds,
162                     //     k - x <= s + f(k) - f(2) is obviously also true which is equivalent to
163                     //     -x <= -hIntegralInverse(hIntegral(k + 0.5) - h(k)),
164                     //     -hIntegralInverse(u) <= -hIntegralInverse(hIntegral(k + 0.5) - h(k)),
165                     //     and finally u >= hIntegral(k + 0.5) - h(k).
166                     //
167                     //   Hence, the right inequality determines the acceptance rate:
168                     //   P(accepted | k = m) = h(m) / (hIntegrated(m+1/2) - hIntegrated(m-1/2))
169                     //   The probability that m is returned is given by
170                     //   P(k = m and accepted) = P(accepted | k = m) * P(k = m) = C * h(m) = C / m^exponent.
171                     //
172                     // In both cases the probabilities are proportional to the probability mass function
173                     // of the Zipf distribution.
174 
175                     return k;
176                 }
177             }
178         }
179 
180         /** {@inheritDoc} */
181         @Override
182         public String toString() {
183             return "Rejection inversion Zipf deviate [" + rng.toString() + "]";
184         }
185 
186         @Override
187         public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
188             return new RejectionInversionZipfSamplerImpl(rng, this);
189         }
190 
191         /**
192          * {@code H(x)} is defined as
193          * <ul>
194          *  <li>{@code (x^(1 - exponent) - 1) / (1 - exponent)}, if {@code exponent != 1}</li>
195          *  <li>{@code log(x)}, if {@code exponent == 1}</li>
196          * </ul>
197          * H(x) is an integral function of h(x), the derivative of H(x) is h(x).
198          *
199          * @param x Free parameter.
200          * @return {@code H(x)}.
201          */
202         private double hIntegral(final double x) {
203             final double logX = Math.log(x);
204             return helper2((1 - exponent) * logX) * logX;
205         }
206 
207         /**
208          * {@code h(x) = 1 / x^exponent}.
209          *
210          * @param x Free parameter.
211          * @return {@code h(x)}.
212          */
213         private double h(final double x) {
214             return Math.exp(-exponent * Math.log(x));
215         }
216 
217         /**
218          * The inverse function of {@code H(x)}.
219          *
220          * @param x Free parameter
221          * @return y for which {@code H(y) = x}.
222          */
223         private double hIntegralInverse(final double x) {
224             double t = x * (1 - exponent);
225             if (t < -1) {
226                 // Limit value to the range [-1, +inf).
227                 // t could be smaller than -1 in some rare cases due to numerical errors.
228                 t = -1;
229             }
230             return Math.exp(helper1(t) * x);
231         }
232 
233         /**
234          * Helper function that calculates {@code log(1 + x) / x}.
235          * <p>
236          * A Taylor series expansion is used, if x is close to 0.
237          * </p>
238          *
239          * @param x A value larger than or equal to -1.
240          * @return {@code log(1 + x) / x}.
241          */
242         private static double helper1(final double x) {
243             if (Math.abs(x) > TAYLOR_THRESHOLD) {
244                 return Math.log1p(x) / x;
245             }
246             return 1 - x * (F_1_2 - x * (F_1_3 - F_1_4 * x));
247         }
248 
249         /**
250          * Helper function to calculate {@code (exp(x) - 1) / x}.
251          * <p>
252          * A Taylor series expansion is used, if x is close to 0.
253          * </p>
254          *
255          * @param x Free parameter.
256          * @return {@code (exp(x) - 1) / x} if x is non-zero, or 1 if x = 0.
257          */
258         private static double helper2(final double x) {
259             if (Math.abs(x) > TAYLOR_THRESHOLD) {
260                 return Math.expm1(x) / x;
261             }
262             return 1 + x * F_1_2 * (1 + x * F_1_3 * (1 + F_1_4 * x));
263         }
264     }
265 
266     /**
267      * This instance delegates sampling. Use the factory method
268      * {@link #of(UniformRandomProvider, int, double)} to create an optimal sampler.
269      *
270      * @param rng Generator of uniformly distributed random numbers.
271      * @param numberOfElements Number of elements.
272      * @param exponent Exponent.
273      * @throws IllegalArgumentException if {@code numberOfElements <= 0}
274      * or {@code exponent < 0}.
275      */
276     public RejectionInversionZipfSampler(UniformRandomProvider rng,
277                                          int numberOfElements,
278                                          double exponent) {
279         this(of(rng, numberOfElements, exponent));
280     }
281 
282     /**
283      * Private constructor used by to prevent partially initialized object if the construction
284      * of the delegate throws. In future versions the public constructor should be removed.
285      *
286      * @param delegate Delegate.
287      */
288     private RejectionInversionZipfSampler(SharedStateDiscreteSampler delegate) {
289         super(null);
290         this.delegate = delegate;
291     }
292 
293     /**
294      * Rejection inversion sampling method for a discrete, bounded Zipf
295      * distribution that is based on the method described in
296      * <blockquote>
297      *   Wolfgang Hörmann and Gerhard Derflinger.
298      *   <i>"Rejection-inversion to generate variates from monotone discrete
299      *    distributions",</i><br>
300      *   <strong>ACM Transactions on Modeling and Computer Simulation</strong> (TOMACS) 6.3 (1996): 169-184.
301      * </blockquote>
302      */
303     @Override
304     public int sample() {
305         return delegate.sample();
306     }
307 
308     /** {@inheritDoc} */
309     @Override
310     public String toString() {
311         return delegate.toString();
312     }
313 
314     /**
315      * {@inheritDoc}
316      *
317      * @since 1.3
318      */
319     @Override
320     public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
321         return delegate.withUniformRandomProvider(rng);
322     }
323 
324     /**
325      * Creates a new Zipf distribution sampler.
326      *
327      * <p>Note when {@code exponent = 0} the Zipf distribution reduces to a
328      * discrete uniform distribution over the interval {@code [1, n]} with {@code n}
329      * the number of elements.
330      *
331      * @param rng Generator of uniformly distributed random numbers.
332      * @param numberOfElements Number of elements.
333      * @param exponent Exponent.
334      * @return the sampler
335      * @throws IllegalArgumentException if {@code numberOfElements <= 0} or
336      * {@code exponent < 0}.
337      * @since 1.3
338      */
339     public static SharedStateDiscreteSampler of(UniformRandomProvider rng,
340                                                 int numberOfElements,
341                                                 double exponent) {
342         if (numberOfElements <= 0) {
343             throw new IllegalArgumentException("number of elements is not strictly positive: " + numberOfElements);
344         }
345         InternalUtils.requirePositive(exponent, "exponent");
346 
347         // When the exponent is at the limit of 0 the distribution PMF reduces to 1 / n
348         // and sampling can use a discrete uniform sampler.
349         return exponent > 0 ?
350             new RejectionInversionZipfSamplerImpl(rng, numberOfElements, exponent) :
351             DiscreteUniformSampler.of(rng, 1, numberOfElements);
352     }
353 }