1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.statistics.descriptive;
18
19 import java.math.BigInteger;
20
21 /**
22 * Computes the variance of the available values. The default implementation uses the
23 * following definition of the <em>sample variance</em>:
24 *
25 * <p>\[ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \]
26 *
27 * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples.
28 *
29 * <ul>
30 * <li>The result is {@code NaN} if no values are added.
31 * <li>The result is zero if there is one value in the data set.
32 * </ul>
33 *
34 * <p>The use of the term \( n − 1 \) is called Bessel's correction. This is an unbiased
35 * estimator of the variance of a hypothetical infinite population. If the
36 * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is
37 * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>.
38 *
39 * <p>The implementation uses an exact integer sum to compute the scaled (by \( n \))
40 * sum of squared deviations from the mean; this is normalised by the scaled correction factor.
41 *
42 * <p>\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \]
43 *
44 * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
45 * This implementation does not check for overflow of the count.
46 *
47 * <p>This class is designed to work with (though does not require)
48 * {@linkplain java.util.stream streams}.
49 *
50 * <p><strong>This implementation is not thread safe.</strong>
51 * If multiple threads access an instance of this class concurrently,
52 * and at least one of the threads invokes the {@link java.util.function.IntConsumer#accept(int) accept} or
53 * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
54 *
55 * <p>However, it is safe to use {@link java.util.function.IntConsumer#accept(int) accept}
56 * and {@link StatisticAccumulator#combine(StatisticResult) combine}
57 * as {@code accumulator} and {@code combiner} functions of
58 * {@link java.util.stream.Collector Collector} on a parallel stream,
59 * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
60 * provides the necessary partitioning, isolation, and merging of results for
61 * safe and efficient parallel execution.
62 *
63 * @see <a href="https://en.wikipedia.org/wiki/variance">variance (Wikipedia)</a>
64 * @see <a href="https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance">
65 * Algorithms for computing the variance (Wikipedia)</a>
66 * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel's correction</a>
67 * @since 1.1
68 */
69 public final class IntVariance implements IntStatistic, StatisticAccumulator<IntVariance> {
70 /** Small array sample size.
71 * Used to avoid computing with UInt96 then converting to UInt128. */
72 static final int SMALL_SAMPLE = 10;
73
74 /** Sum of the squared values. */
75 private final UInt128 sumSq;
76 /** Sum of the values. */
77 private final Int128 sum;
78 /** Count of values that have been added. */
79 private long n;
80
81 /** Flag to control if the statistic is biased, or should use a bias correction. */
82 private boolean biased;
83
84 /**
85 * Create an instance.
86 */
87 private IntVariance() {
88 this(UInt128.create(), Int128.create(), 0);
89 }
90
91 /**
92 * Create an instance.
93 *
94 * @param sumSq Sum of the squared values.
95 * @param sum Sum of the values.
96 * @param n Count of values that have been added.
97 */
98 private IntVariance(UInt128 sumSq, Int128 sum, int n) {
99 this.sumSq = sumSq;
100 this.sum = sum;
101 this.n = n;
102 }
103
104 /**
105 * Creates an instance.
106 *
107 * <p>The initial result is {@code NaN}.
108 *
109 * @return {@code IntVariance} instance.
110 */
111 public static IntVariance create() {
112 return new IntVariance();
113 }
114
115 /**
116 * Returns an instance populated using the input {@code values}.
117 *
118 * @param values Values.
119 * @return {@code IntVariance} instance.
120 */
121 public static IntVariance of(int... values) {
122 return createFromRange(values, 0, values.length);
123 }
124
125 /**
126 * Returns an instance populated using the specified range of {@code values}.
127 *
128 * @param values Values.
129 * @param from Inclusive start of the range.
130 * @param to Exclusive end of the range.
131 * @return {@code IntVariance} instance.
132 * @throws IndexOutOfBoundsException if the sub-range is out of bounds
133 * @since 1.2
134 */
135 public static IntVariance ofRange(int[] values, int from, int to) {
136 Statistics.checkFromToIndex(from, to, values.length);
137 return createFromRange(values, from, to);
138 }
139
140 /**
141 * Create an instance using the specified range of {@code values}.
142 *
143 * <p>Warning: No range checks are performed.
144 *
145 * @param values Values.
146 * @param from Inclusive start of the range.
147 * @param to Exclusive end of the range.
148 * @return {@code IntVariance} instance.
149 */
150 static IntVariance createFromRange(int[] values, int from, int to) {
151 // Small arrays can be processed using the object
152 final int length = to - from;
153 if (length < SMALL_SAMPLE) {
154 final IntVariance stat = new IntVariance();
155 for (int i = from; i < to; i++) {
156 stat.accept(values[i]);
157 }
158 return stat;
159 }
160
161 // Arrays can be processed using specialised counts knowing the maximum limit
162 // for an array is 2^31 values.
163 long s = 0;
164 final UInt96 ss = UInt96.create();
165 // Process pairs as we know two maximum value int^2 will not overflow
166 // an unsigned long.
167 final int end = from + (length & ~0x1);
168 for (int i = from; i < end; i += 2) {
169 final long x = values[i];
170 final long y = values[i + 1];
171 s += x + y;
172 ss.addPositive(x * x + y * y);
173 }
174 if (end < to) {
175 final long x = values[end];
176 s += x;
177 ss.addPositive(x * x);
178 }
179
180 // Convert
181 return new IntVariance(UInt128.of(ss), Int128.of(s), length);
182 }
183
184 /**
185 * Updates the state of the statistic to reflect the addition of {@code value}.
186 *
187 * @param value Value.
188 */
189 @Override
190 public void accept(int value) {
191 sumSq.addPositive((long) value * value);
192 sum.add(value);
193 n++;
194 }
195
196 /**
197 * Gets the variance of all input values.
198 *
199 * <p>When no values have been added, the result is {@code NaN}.
200 *
201 * @return variance of all values.
202 */
203 @Override
204 public double getAsDouble() {
205 return computeVarianceOrStd(sumSq, sum, n, biased, false);
206 }
207
208 /**
209 * Compute the variance (or standard deviation).
210 *
211 * <p>The {@code std} flag controls if the result is returned as the standard deviation
212 * using the {@link Math#sqrt(double) square root} function.
213 *
214 * @param sumSq Sum of the squared values.
215 * @param sum Sum of the values.
216 * @param n Count of values that have been added.
217 * @param biased Flag to control if the statistic is biased, or should use a bias correction.
218 * @param std Flag to control if the statistic is the standard deviation.
219 * @return the variance (or standard deviation)
220 */
221 static double computeVarianceOrStd(UInt128 sumSq, Int128 sum, long n, boolean biased, boolean std) {
222 if (n == 0) {
223 return Double.NaN;
224 }
225 // Avoid a divide by zero
226 if (n == 1) {
227 return 0;
228 }
229 // Sum-of-squared deviations: sum(x^2) - sum(x)^2 / n
230 // Sum-of-squared deviations precursor: n * sum(x^2) - sum(x)^2
231 // The precursor is computed in integer precision.
232 // The divide uses double precision.
233 // This ensures we avoid cancellation in the difference and use a fast divide.
234 // The result is limited to by the rounding in the double computation.
235 final double diff = computeSSDevN(sumSq, sum, n);
236 final long n0 = biased ? n : n - 1;
237 final double v = diff / IntMath.unsignedMultiplyToDouble(n, n0);
238 if (std) {
239 return Math.sqrt(v);
240 }
241 return v;
242 }
243
244 /**
245 * Compute the sum-of-squared deviations multiplied by the count of values:
246 * {@code n * sum(x^2) - sum(x)^2}.
247 *
248 * @param sumSq Sum of the squared values.
249 * @param sum Sum of the values.
250 * @param n Count of values that have been added.
251 * @return the sum-of-squared deviations precursor
252 */
253 private static double computeSSDevN(UInt128 sumSq, Int128 sum, long n) {
254 // Compute the term if possible using fast integer arithmetic.
255 // 128-bit sum(x^2) * n will be OK when the upper 32-bits are zero.
256 // 128-bit sum(x)^2 will be OK when the upper 64-bits are zero.
257 // Both are safe when n < 2^32.
258 if ((n >>> Integer.SIZE) == 0) {
259 return sumSq.unsignedMultiply((int) n).subtract(sum.squareLow()).toDouble();
260 } else {
261 return sumSq.toBigInteger().multiply(BigInteger.valueOf(n))
262 .subtract(square(sum.toBigInteger())).doubleValue();
263 }
264 }
265
266 /**
267 * Compute the sum of the squared deviations from the mean.
268 *
269 * <p>This is a helper method used in higher order moments.
270 *
271 * @return the sum of the squared deviations
272 */
273 double computeSumOfSquaredDeviations() {
274 return computeSSDevN(sumSq, sum, n) / n;
275 }
276
277 /**
278 * Compute the mean.
279 *
280 * <p>This is a helper method used in higher order moments.
281 *
282 * @return the mean
283 */
284 double computeMean() {
285 return IntMean.computeMean(sum, n);
286 }
287
288 /**
289 * Convenience method to square a BigInteger.
290 *
291 * @param x Value
292 * @return x^2
293 */
294 private static BigInteger square(BigInteger x) {
295 return x.multiply(x);
296 }
297
298 @Override
299 public IntVariance combine(IntVariance other) {
300 sumSq.add(other.sumSq);
301 sum.add(other.sum);
302 n += other.n;
303 return this;
304 }
305
306 /**
307 * Sets the value of the biased flag. The default value is {@code false}.
308 *
309 * <p>If {@code false} the sum of squared deviations from the sample mean is normalised by
310 * {@code n - 1} where {@code n} is the number of samples. This is Bessel's correction
311 * for an unbiased estimator of the variance of a hypothetical infinite population.
312 *
313 * <p>If {@code true} the sum of squared deviations is normalised by the number of samples
314 * {@code n}.
315 *
316 * <p>Note: This option only applies when {@code n > 1}. The variance of {@code n = 1} is
317 * always 0.
318 *
319 * <p>This flag only controls the final computation of the statistic. The value of this flag
320 * will not affect compatibility between instances during a {@link #combine(IntVariance) combine}
321 * operation.
322 *
323 * @param v Value.
324 * @return {@code this} instance
325 */
326 public IntVariance setBiased(boolean v) {
327 biased = v;
328 return this;
329 }
330 }