1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.statistics.descriptive;
18
19 import java.math.BigInteger;
20
21 /**
22 * Computes the variance of the available values. The default implementation uses the
23 * following definition of the <em>sample variance</em>:
24 *
25 * <p>\[ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \]
26 *
27 * <p>where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples.
28 *
29 * <ul>
30 * <li>The result is {@code NaN} if no values are added.
31 * <li>The result is zero if there is one value in the data set.
32 * </ul>
33 *
34 * <p>The use of the term \( n − 1 \) is called Bessel's correction. This is an unbiased
35 * estimator of the variance of a hypothetical infinite population. If the
36 * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is
37 * changed to \( \frac{1}{n} \) for a biased estimator of the <em>sample variance</em>.
38 *
39 * <p>The implementation uses an exact integer sum to compute the scaled (by \( n \))
40 * sum of squared deviations from the mean; this is normalised by the scaled correction factor.
41 *
42 * <p>\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \]
43 *
44 * <p>Supports up to 2<sup>63</sup> (exclusive) observations.
45 * This implementation does not check for overflow of the count.
46 *
47 * <p>This class is designed to work with (though does not require)
48 * {@linkplain java.util.stream streams}.
49 *
50 * <p><strong>This implementation is not thread safe.</strong>
51 * If multiple threads access an instance of this class concurrently,
52 * and at least one of the threads invokes the {@link java.util.function.LongConsumer#accept(long) accept} or
53 * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
54 *
55 * <p>However, it is safe to use {@link java.util.function.LongConsumer#accept(long) accept}
56 * and {@link StatisticAccumulator#combine(StatisticResult) combine}
57 * as {@code accumulator} and {@code combiner} functions of
58 * {@link java.util.stream.Collector Collector} on a parallel stream,
59 * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
60 * provides the necessary partitioning, isolation, and merging of results for
61 * safe and efficient parallel execution.
62 *
63 * @see <a href="https://en.wikipedia.org/wiki/variance">variance (Wikipedia)</a>
64 * @see <a href="https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance">
65 * Algorithms for computing the variance (Wikipedia)</a>
66 * @see <a href="https://en.wikipedia.org/wiki/Bessel%27s_correction">Bessel's correction</a>
67 * @since 1.1
68 */
69 public final class LongVariance implements LongStatistic, StatisticAccumulator<LongVariance> {
70
71 /** Sum of the squared values. */
72 private final UInt192 sumSq;
73 /** Sum of the values. */
74 private final Int128 sum;
75 /** Count of values that have been added. */
76 private long n;
77
78 /** Flag to control if the statistic is biased, or should use a bias correction. */
79 private boolean biased;
80
81 /**
82 * Create an instance.
83 */
84 private LongVariance() {
85 this(UInt192.create(), Int128.create(), 0);
86 }
87
88 /**
89 * Create an instance.
90 *
91 * @param sumSq Sum of the squared values.
92 * @param sum Sum of the values.
93 * @param n Count of values that have been added.
94 */
95 private LongVariance(UInt192 sumSq, Int128 sum, int n) {
96 this.sumSq = sumSq;
97 this.sum = sum;
98 this.n = n;
99 }
100
101 /**
102 * Creates an instance.
103 *
104 * <p>The initial result is {@code NaN}.
105 *
106 * @return {@code LongVariance} instance.
107 */
108 public static LongVariance create() {
109 return new LongVariance();
110 }
111
112 /**
113 * Returns an instance populated using the input {@code values}.
114 *
115 * @param values Values.
116 * @return {@code LongVariance} instance.
117 */
118 public static LongVariance of(long... values) {
119 return createFromRange(values, 0, values.length);
120 }
121
122 /**
123 * Returns an instance populated using the specified range of {@code values}.
124 *
125 * @param values Values.
126 * @param from Inclusive start of the range.
127 * @param to Exclusive end of the range.
128 * @return {@code LongVariance} instance.
129 * @throws IndexOutOfBoundsException if the sub-range is out of bounds
130 * @since 1.2
131 */
132 public static LongVariance ofRange(long[] values, int from, int to) {
133 Statistics.checkFromToIndex(from, to, values.length);
134 return createFromRange(values, from, to);
135 }
136
137 /**
138 * Create an instance using the specified range of {@code values}.
139 *
140 * <p>Warning: No range checks are performed.
141 *
142 * @param values Values.
143 * @param from Inclusive start of the range.
144 * @param to Exclusive end of the range.
145 * @return {@code LongVariance} instance.
146 */
147 static LongVariance createFromRange(long[] values, int from, int to) {
148 // Note: Arrays could be processed using specialised counts knowing the maximum limit
149 // for an array is 2^31 values. Requires a UInt160.
150
151 final Int128 s = Int128.create();
152 final UInt192 ss = UInt192.create();
153 for (int i = from; i < to; i++) {
154 final long x = values[i];
155 s.add(x);
156 ss.addSquare(x);
157 }
158 return new LongVariance(ss, s, to - from);
159 }
160
161 /**
162 * Updates the state of the statistic to reflect the addition of {@code value}.
163 *
164 * @param value Value.
165 */
166 @Override
167 public void accept(long value) {
168 sumSq.addSquare(value);
169 sum.add(value);
170 n++;
171 }
172
173 /**
174 * Gets the variance of all input values.
175 *
176 * <p>When no values have been added, the result is {@code NaN}.
177 *
178 * @return variance of all values.
179 */
180 @Override
181 public double getAsDouble() {
182 return computeVarianceOrStd(sumSq, sum, n, biased, false);
183 }
184
185 /**
186 * Compute the variance (or standard deviation).
187 *
188 * <p>The {@code std} flag controls if the result is returned as the standard deviation
189 * using the {@link Math#sqrt(double) square root} function.
190 *
191 * @param sumSq Sum of the squared values.
192 * @param sum Sum of the values.
193 * @param n Count of values that have been added.
194 * @param biased Flag to control if the statistic is biased, or should use a bias correction.
195 * @param std Flag to control if the statistic is the standard deviation.
196 * @return the variance (or standard deviation)
197 */
198 static double computeVarianceOrStd(UInt192 sumSq, Int128 sum, long n, boolean biased, boolean std) {
199 if (n == 0) {
200 return Double.NaN;
201 }
202 // Avoid a divide by zero
203 if (n == 1) {
204 return 0;
205 }
206 // Sum-of-squared deviations: sum(x^2) - sum(x)^2 / n
207 // Sum-of-squared deviations precursor: n * sum(x^2) - sum(x)^2
208 // The precursor is computed in integer precision.
209 // The divide uses double precision.
210 // This ensures we avoid cancellation in the difference and use a fast divide.
211 // The result is limited to by the rounding in the double computation.
212 final double diff = computeSSDevN(sumSq, sum, n);
213 final long n0 = biased ? n : n - 1;
214 final double v = diff / IntMath.unsignedMultiplyToDouble(n, n0);
215 if (std) {
216 return Math.sqrt(v);
217 }
218 return v;
219 }
220
221 /**
222 * Compute the sum-of-squared deviations multiplied by the count of values:
223 * {@code n * sum(x^2) - sum(x)^2}.
224 *
225 * @param sumSq Sum of the squared values.
226 * @param sum Sum of the values.
227 * @param n Count of values that have been added.
228 * @return the sum-of-squared deviations precursor
229 */
230 private static double computeSSDevN(UInt192 sumSq, Int128 sum, long n) {
231 // Compute the term if possible using fast integer arithmetic.
232 // 192-bit sum(x^2) * n will be OK when the upper 32-bits are zero.
233 // 128-bit sum(x)^2 will be OK when the upper 64-bits are zero.
234 // The first is safe when n < 2^32 but we must check the sum high bits.
235 if (((n >>> Integer.SIZE) | sum.hi64()) == 0) {
236 return sumSq.unsignedMultiply((int) n).subtract(sum.squareLow()).toDouble();
237 } else {
238 return sumSq.toBigInteger().multiply(BigInteger.valueOf(n))
239 .subtract(square(sum.toBigInteger())).doubleValue();
240 }
241 }
242
243 /**
244 * Compute the sum of the squared deviations from the mean.
245 *
246 * <p>This is a helper method used in higher order moments.
247 *
248 * @return the sum of the squared deviations
249 */
250 double computeSumOfSquaredDeviations() {
251 return computeSSDevN(sumSq, sum, n) / n;
252 }
253
254 /**
255 * Compute the mean.
256 *
257 * <p>This is a helper method used in higher order moments.
258 *
259 * @return the mean
260 */
261 double computeMean() {
262 return LongMean.computeMean(sum, n);
263 }
264
265 /**
266 * Convenience method to square a BigInteger.
267 *
268 * @param x Value
269 * @return x^2
270 */
271 private static BigInteger square(BigInteger x) {
272 return x.multiply(x);
273 }
274
275 @Override
276 public LongVariance combine(LongVariance other) {
277 sumSq.add(other.sumSq);
278 sum.add(other.sum);
279 n += other.n;
280 return this;
281 }
282
283 /**
284 * Sets the value of the biased flag. The default value is {@code false}.
285 *
286 * <p>If {@code false} the sum of squared deviations from the sample mean is normalised by
287 * {@code n - 1} where {@code n} is the number of samples. This is Bessel's correction
288 * for an unbiased estimator of the variance of a hypothetical infinite population.
289 *
290 * <p>If {@code true} the sum of squared deviations is normalised by the number of samples
291 * {@code n}.
292 *
293 * <p>Note: This option only applies when {@code n > 1}. The variance of {@code n = 1} is
294 * always 0.
295 *
296 * <p>This flag only controls the final computation of the statistic. The value of this flag
297 * will not affect compatibility between instances during a {@link #combine(LongVariance) combine}
298 * operation.
299 *
300 * @param v Value.
301 * @return {@code this} instance
302 */
303 public LongVariance setBiased(boolean v) {
304 biased = v;
305 return this;
306 }
307 }