Class BinomialDistribution

  • All Implemented Interfaces:
    DiscreteDistribution

    public final class BinomialDistribution
    extends Object
    Implementation of the binomial distribution.

    The probability mass function of \( X \) is:

    \[ f(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k} \]

    for \( n \in \{0, 1, 2, \dots\} \) the number of trials, \( p \in [0, 1] \) the probability of success, \( k \in \{0, 1, \dots, n\} \) the number of successes, and

    \[ \binom{n}{k} = \frac{n!}{k! \, (n-k)!} \]

    is the binomial coefficient.

    See Also:
    Binomial distribution (Wikipedia), Binomial distribution (MathWorld)
    • Method Detail

      • of

        public static BinomialDistribution of​(int trials,
                                              double p)
        Creates a binomial distribution.
        Parameters:
        trials - Number of trials.
        p - Probability of success.
        Returns:
        the distribution
        Throws:
        IllegalArgumentException - if trials < 0, or if p < 0 or p > 1.
      • getNumberOfTrials

        public int getNumberOfTrials()
        Gets the number of trials parameter of this distribution.
        Returns:
        the number of trials.
      • getProbabilityOfSuccess

        public double getProbabilityOfSuccess()
        Gets the probability of success parameter of this distribution.
        Returns:
        the probability of success.
      • probability

        public double probability​(int x)
        For a random variable X whose values are distributed according to this distribution, this method returns P(X = x). In other words, this method represents the probability mass function (PMF) for the distribution.
        Parameters:
        x - Point at which the PMF is evaluated.
        Returns:
        the value of the probability mass function at x.
      • logProbability

        public double logProbability​(int x)
        For a random variable X whose values are distributed according to this distribution, this method returns log(P(X = x)), where log is the natural logarithm.
        Parameters:
        x - Point at which the PMF is evaluated.
        Returns:
        the logarithm of the value of the probability mass function at x.
      • cumulativeProbability

        public double cumulativeProbability​(int x)
        For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x). In other, words, this method represents the (cumulative) distribution function (CDF) for this distribution.
        Parameters:
        x - Point at which the CDF is evaluated.
        Returns:
        the probability that a random variable with this distribution takes a value less than or equal to x.
      • survivalProbability

        public double survivalProbability​(int x)
        For a random variable X whose values are distributed according to this distribution, this method returns P(X > x). In other words, this method represents the complementary cumulative distribution function.

        By default, this is defined as 1 - cumulativeProbability(x), but the specific implementation may be more accurate.

        Parameters:
        x - Point at which the survival function is evaluated.
        Returns:
        the probability that a random variable with this distribution takes a value greater than x.
      • getMean

        public double getMean()
        Gets the mean of this distribution.

        For number of trials \( n \) and probability of success \( p \), the mean is \( np \).

        Returns:
        the mean.
      • getVariance

        public double getVariance()
        Gets the variance of this distribution.

        For number of trials \( n \) and probability of success \( p \), the variance is \( np (1 - p) \).

        Returns:
        the variance.
      • getSupportLowerBound

        public int getSupportLowerBound()
        Gets the lower bound of the support. This method must return the same value as inverseCumulativeProbability(0), i.e. \( \inf \{ x \in \mathbb Z : P(X \le x) \gt 0 \} \). By convention, Integer.MIN_VALUE should be substituted for negative infinity.

        The lower bound of the support is always 0 except for the probability parameter p = 1.

        Returns:
        0 or the number of trials.
      • getSupportUpperBound

        public int getSupportUpperBound()
        Gets the upper bound of the support. This method must return the same value as inverseCumulativeProbability(1), i.e. \( \inf \{ x \in \mathbb Z : P(X \le x) = 1 \} \). By convention, Integer.MAX_VALUE should be substituted for positive infinity.

        The upper bound of the support is the number of trials except for the probability parameter p = 0.

        Returns:
        number of trials or 0.
      • probability

        public double probability​(int x0,
                                  int x1)
        For a random variable X whose values are distributed according to this distribution, this method returns P(x0 < X <= x1). The default implementation uses the identity P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)

        Special cases:

        • returns 0.0 if x0 == x1;
        • returns probability(x1) if x0 + 1 == x1;
        Specified by:
        probability in interface DiscreteDistribution
        Parameters:
        x0 - Lower bound (exclusive).
        x1 - Upper bound (inclusive).
        Returns:
        the probability that a random variable with this distribution takes a value between x0 and x1, excluding the lower and including the upper endpoint.
      • inverseSurvivalProbability

        public int inverseSurvivalProbability​(double p)
        Computes the inverse survival probability function of this distribution. For a random variable X distributed according to this distribution, the returned value is:

        \[ x = \begin{cases} \inf \{ x \in \mathbb Z : P(X \gt x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb Z : P(X \gt x) \lt 1 \} & \text{for } p = 1 \end{cases} \]

        If the result exceeds the range of the data type int, then Integer.MIN_VALUE or Integer.MAX_VALUE is returned. In this case the result of survivalProbability(x) called using the returned (1-p)-quantile may not compute the original p.

        By default, this is defined as inverseCumulativeProbability(1 - p), but the specific implementation may be more accurate.

        The default implementation returns:

        Specified by:
        inverseSurvivalProbability in interface DiscreteDistribution
        Parameters:
        p - Cumulative probability.
        Returns:
        the smallest (1-p)-quantile of this distribution (largest 0-quantile for p = 1).
        Throws:
        IllegalArgumentException - if p < 0 or p > 1
      • createSampler

        public DiscreteDistribution.Sampler createSampler​(org.apache.commons.rng.UniformRandomProvider rng)
        Creates a sampler.
        Specified by:
        createSampler in interface DiscreteDistribution
        Parameters:
        rng - Generator of uniformly distributed numbers.
        Returns:
        a sampler that produces random numbers according this distribution.