Class FoldedNormalDistribution
- java.lang.Object
-
- org.apache.commons.statistics.distribution.FoldedNormalDistribution
-
- All Implemented Interfaces:
ContinuousDistribution
public abstract class FoldedNormalDistribution extends Object
Implementation of the folded normal distribution.Given a normally distributed random variable \( X \) with mean \( \mu \) and variance \( \sigma^2 \), the random variable \( Y = |X| \) has a folded normal distribution. This is equivalent to not recording the sign from a normally distributed random variable.
The probability density function of \( X \) is:
\[ f(x; \mu, \sigma) = \frac 1 {\sigma\sqrt{2\pi}} e^{-{\frac 1 2}\left( \frac{x-\mu}{\sigma} \right)^2 } + \frac 1 {\sigma\sqrt{2\pi}} e^{-{\frac 1 2}\left( \frac{x+\mu}{\sigma} \right)^2 }\]
for \( \mu \) the location, \( \sigma > 0 \) the scale, and \( x \in [0, \infty) \).
If the location \( \mu \) is 0 this reduces to the half-normal distribution.
- Since:
- 1.1
- See Also:
- Folded normal distribution (Wikipedia), Half-normal distribution (Wikipedia)
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface org.apache.commons.statistics.distribution.ContinuousDistribution
ContinuousDistribution.Sampler
-
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description ContinuousDistribution.Sampler
createSampler(org.apache.commons.rng.UniformRandomProvider rng)
Creates a sampler.abstract double
getMean()
Gets the mean of this distribution.abstract double
getMu()
Gets the location parameter \( \mu \) of this distribution.double
getSigma()
Gets the scale parameter \( \sigma \) of this distribution.double
getSupportLowerBound()
Gets the lower bound of the support.double
getSupportUpperBound()
Gets the upper bound of the support.abstract double
getVariance()
Gets the variance of this distribution.double
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution.double
inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution.static FoldedNormalDistribution
of(double mu, double sigma)
Creates a folded normal distribution.double
probability(double x0, double x1)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(x0 < X <= x1)
.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.apache.commons.statistics.distribution.ContinuousDistribution
cumulativeProbability, density, logDensity, survivalProbability
-
-
-
-
Method Detail
-
of
public static FoldedNormalDistribution of(double mu, double sigma)
Creates a folded normal distribution. If the locationmu
is zero this is the half-normal distribution.- Parameters:
mu
- Location parameter.sigma
- Scale parameter.- Returns:
- the distribution
- Throws:
IllegalArgumentException
- ifsigma <= 0
.
-
getMu
public abstract double getMu()
Gets the location parameter \( \mu \) of this distribution.- Returns:
- the mu parameter.
-
getSigma
public double getSigma()
Gets the scale parameter \( \sigma \) of this distribution.- Returns:
- the sigma parameter.
-
getMean
public abstract double getMean()
Gets the mean of this distribution.For location parameter \( \mu \) and scale parameter \( \sigma \), the mean is:
\[ \sigma \sqrt{ \frac 2 \pi } \exp \left( \frac{-\mu^2}{2\sigma^2} \right) + \mu \operatorname{erf} \left( \frac \mu {\sqrt{2\sigma^2}} \right) \]
where \( \operatorname{erf} \) is the error function.
- Returns:
- the mean.
-
getVariance
public abstract double getVariance()
Gets the variance of this distribution.For location parameter \( \mu \), scale parameter \( \sigma \) and a distribution mean \( \mu_Y \), the variance is:
\[ \mu^2 + \sigma^2 - \mu_{Y}^2 \]
- Returns:
- the variance.
-
getSupportLowerBound
public double getSupportLowerBound()
Gets the lower bound of the support. It must return the same value asinverseCumulativeProbability(0)
, i.e. \( \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} \).The lower bound of the support is always 0.
- Returns:
- 0.
-
getSupportUpperBound
public double getSupportUpperBound()
Gets the upper bound of the support. It must return the same value asinverseCumulativeProbability(1)
, i.e. \( \inf \{ x \in \mathbb R : P(X \le x) = 1 \} \).The upper bound of the support is always positive infinity.
- Returns:
- positive infinity.
-
probability
public double probability(double x0, double x1)
For a random variableX
whose values are distributed according to this distribution, this method returnsP(x0 < X <= x1)
. The default implementation uses the identityP(x0 < X <= x1) = P(X <= x1) - P(X <= x0)
- Specified by:
probability
in interfaceContinuousDistribution
- Parameters:
x0
- Lower bound (exclusive).x1
- Upper bound (inclusive).- Returns:
- the probability that a random variable with this distribution
takes a value between
x0
andx1
, excluding the lower and including the upper endpoint.
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p)
Computes the quantile function of this distribution. For a random variableX
distributed according to this distribution, the returned value is:\[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \le x) \ge p\} & \text{for } 0 \lt p \le 1 \\ \inf \{ x \in \mathbb R : P(X \le x) \gt 0 \} & \text{for } p = 0 \end{cases} \]
The default implementation returns:
ContinuousDistribution.getSupportLowerBound()
forp = 0
,ContinuousDistribution.getSupportUpperBound()
forp = 1
, or- the result of a search for a root between the lower and upper bound using
cumulativeProbability(x) - p
. The bounds may be bracketed for efficiency.
- Specified by:
inverseCumulativeProbability
in interfaceContinuousDistribution
- Parameters:
p
- Cumulative probability.- Returns:
- the smallest
p
-quantile of this distribution (largest 0-quantile forp = 0
). - Throws:
IllegalArgumentException
- ifp < 0
orp > 1
-
inverseSurvivalProbability
public double inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution. For a random variableX
distributed according to this distribution, the returned value is:\[ x = \begin{cases} \inf \{ x \in \mathbb R : P(X \gt x) \le p\} & \text{for } 0 \le p \lt 1 \\ \inf \{ x \in \mathbb R : P(X \gt x) \lt 1 \} & \text{for } p = 1 \end{cases} \]
By default, this is defined as
inverseCumulativeProbability(1 - p)
, but the specific implementation may be more accurate.The default implementation returns:
ContinuousDistribution.getSupportLowerBound()
forp = 1
,ContinuousDistribution.getSupportUpperBound()
forp = 0
, or- the result of a search for a root between the lower and upper bound using
survivalProbability(x) - p
. The bounds may be bracketed for efficiency.
- Specified by:
inverseSurvivalProbability
in interfaceContinuousDistribution
- Parameters:
p
- Survival probability.- Returns:
- the smallest
(1-p)
-quantile of this distribution (largest 0-quantile forp = 1
). - Throws:
IllegalArgumentException
- ifp < 0
orp > 1
-
createSampler
public ContinuousDistribution.Sampler createSampler(org.apache.commons.rng.UniformRandomProvider rng)
Creates a sampler.- Specified by:
createSampler
in interfaceContinuousDistribution
- Parameters:
rng
- Generator of uniformly distributed numbers.- Returns:
- a sampler that produces random numbers according this distribution.
-
-