public final class GeometricDistribution extends Object
The probability mass function of
for
This parameterization is used to model the number of failures until the first success.
DiscreteDistribution.Sampler
Modifier and Type | Method and Description |
---|---|
DiscreteDistribution.Sampler |
createSampler(UniformRandomProvider rng)
Creates a sampler.
|
double |
cumulativeProbability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X <= x) . |
double |
getMean()
Gets the mean of this distribution.
|
double |
getProbabilityOfSuccess()
Gets the probability of success parameter of this distribution.
|
int |
getSupportLowerBound()
Gets the lower bound of the support.
|
int |
getSupportUpperBound()
Gets the upper bound of the support.
|
double |
getVariance()
Gets the variance of this distribution.
|
int |
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution.
|
int |
inverseSurvivalProbability(double p)
Computes the inverse survival probability function of this distribution.
|
double |
logProbability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns log(P(X = x)) , where
log is the natural logarithm. |
static GeometricDistribution |
of(double p)
Creates a geometric distribution.
|
double |
probability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X = x) . |
double |
probability(int x0,
int x1)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1) . |
double |
survivalProbability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X > x) . |
public static GeometricDistribution of(double p)
p
- Probability of success.IllegalArgumentException
- if p <= 0
or p > 1
.public double getProbabilityOfSuccess()
public double probability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X = x)
.
In other words, this method represents the probability mass function (PMF)
for the distribution.x
- Point at which the PMF is evaluated.x
.public double logProbability(int x)
X
whose values are distributed according
to this distribution, this method returns log(P(X = x))
, where
log
is the natural logarithm.x
- Point at which the PMF is evaluated.x
.public double cumulativeProbability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X <= x)
.
In other, words, this method represents the (cumulative) distribution
function (CDF) for this distribution.x
- Point at which the CDF is evaluated.x
.public double survivalProbability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X > x)
.
In other words, this method represents the complementary cumulative
distribution function.
By default, this is defined as 1 - cumulativeProbability(x)
, but
the specific implementation may be more accurate.
x
- Point at which the survival function is evaluated.x
.public int inverseCumulativeProbability(double p)
X
distributed according to this distribution,
the returned value is:
If the result exceeds the range of the data type int
,
then Integer.MIN_VALUE
or Integer.MAX_VALUE
is returned.
In this case the result of cumulativeProbability(x)
called using the returned p
-quantile may not compute the original p
.
The default implementation returns:
DiscreteDistribution.getSupportLowerBound()
for p = 0
,DiscreteDistribution.getSupportUpperBound()
for p = 1
, orcumulativeProbability(x)
.
The bounds may be bracketed for efficiency.inverseCumulativeProbability
in interface DiscreteDistribution
p
- Cumulative probability.p
-quantile of this distribution
(largest 0-quantile for p = 0
).public int inverseSurvivalProbability(double p)
X
distributed according to this distribution,
the returned value is:
If the result exceeds the range of the data type int
,
then Integer.MIN_VALUE
or Integer.MAX_VALUE
is returned.
In this case the result of survivalProbability(x)
called using the returned (1-p)
-quantile may not compute the original p
.
By default, this is defined as inverseCumulativeProbability(1 - p)
, but
the specific implementation may be more accurate.
The default implementation returns:
DiscreteDistribution.getSupportLowerBound()
for p = 1
,DiscreteDistribution.getSupportUpperBound()
for p = 0
, orsurvivalProbability(x)
.
The bounds may be bracketed for efficiency.inverseSurvivalProbability
in interface DiscreteDistribution
p
- Cumulative probability.(1-p)
-quantile of this distribution
(largest 0-quantile for p = 1
).public double getMean()
For probability parameter
public double getVariance()
For probability parameter
public int getSupportLowerBound()
inverseCumulativeProbability(0)
, i.e.
Integer.MIN_VALUE
should be substituted
for negative infinity.
The lower bound of the support is always 0.
public int getSupportUpperBound()
inverseCumulativeProbability(1)
, i.e.
Integer.MAX_VALUE
should be substituted
for positive infinity.
The upper bound of the support is positive infinity except for the
probability parameter p = 1.0
.
Integer.MAX_VALUE
or 0.public DiscreteDistribution.Sampler createSampler(UniformRandomProvider rng)
createSampler
in interface DiscreteDistribution
rng
- Generator of uniformly distributed numbers.public double probability(int x0, int x1)
X
whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1)
.
The default implementation uses the identity
P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)
Special cases:
0.0
if x0 == x1
;
probability(x1)
if x0 + 1 == x1
;
probability
in interface DiscreteDistribution
x0
- Lower bound (exclusive).x1
- Upper bound (inclusive).x0
and x1
, excluding the lower
and including the upper endpoint.Copyright © 2018–2022 The Apache Software Foundation. All rights reserved.