Class FoldedNormalDistribution

  • All Implemented Interfaces:
    ContinuousDistribution

    public abstract class FoldedNormalDistribution
    extends Object
    Implementation of the folded normal distribution.

    Given a normally distributed random variable X with mean μ and variance σ2, the random variable Y=|X| has a folded normal distribution. This is equivalent to not recording the sign from a normally distributed random variable.

    The probability density function of X is:

    f(x;μ,σ)=1σ2πe12(xμσ)2+1σ2πe12(x+μσ)2

    for μ the location, σ>0 the scale, and x[0,).

    If the location μ is 0 this reduces to the half-normal distribution.

    Since:
    1.1
    See Also:
    Folded normal distribution (Wikipedia), Half-normal distribution (Wikipedia)
    • Method Detail

      • of

        public static FoldedNormalDistribution of​(double mu,
                                                  double sigma)
        Creates a folded normal distribution. If the location mu is zero this is the half-normal distribution.
        Parameters:
        mu - Location parameter.
        sigma - Scale parameter.
        Returns:
        the distribution
        Throws:
        IllegalArgumentException - if sigma <= 0.
      • getMu

        public abstract double getMu()
        Gets the location parameter μ of this distribution.
        Returns:
        the mu parameter.
      • getSigma

        public double getSigma()
        Gets the scale parameter σ of this distribution.
        Returns:
        the sigma parameter.
      • getMean

        public abstract double getMean()
        Gets the mean of this distribution.

        For location parameter μ and scale parameter σ, the mean is:

        σ2πexp(μ22σ2)+μerf(μ2σ2)

        where erf is the error function.

        Returns:
        the mean.
      • getVariance

        public abstract double getVariance()
        Gets the variance of this distribution.

        For location parameter μ, scale parameter σ and a distribution mean μY, the variance is:

        μ2+σ2μY2

        Returns:
        the variance.
      • getSupportLowerBound

        public double getSupportLowerBound()
        Gets the lower bound of the support. It must return the same value as inverseCumulativeProbability(0), i.e. inf{xR:P(Xx)>0}.

        The lower bound of the support is always 0.

        Returns:
        0.
      • getSupportUpperBound

        public double getSupportUpperBound()
        Gets the upper bound of the support. It must return the same value as inverseCumulativeProbability(1), i.e. inf{xR:P(Xx)=1}.

        The upper bound of the support is always positive infinity.

        Returns:
        positive infinity.
      • probability

        public double probability​(double x0,
                                  double x1)
        For a random variable X whose values are distributed according to this distribution, this method returns P(x0 < X <= x1). The default implementation uses the identity P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)
        Specified by:
        probability in interface ContinuousDistribution
        Parameters:
        x0 - Lower bound (exclusive).
        x1 - Upper bound (inclusive).
        Returns:
        the probability that a random variable with this distribution takes a value between x0 and x1, excluding the lower and including the upper endpoint.
      • inverseSurvivalProbability

        public double inverseSurvivalProbability​(double p)
        Computes the inverse survival probability function of this distribution. For a random variable X distributed according to this distribution, the returned value is:

        x={inf{xR:P(X>x)p}for 0p<1inf{xR:P(X>x)<1}for p=1

        By default, this is defined as inverseCumulativeProbability(1 - p), but the specific implementation may be more accurate.

        The default implementation returns:

        Specified by:
        inverseSurvivalProbability in interface ContinuousDistribution
        Parameters:
        p - Survival probability.
        Returns:
        the smallest (1-p)-quantile of this distribution (largest 0-quantile for p = 1).
        Throws:
        IllegalArgumentException - if p < 0 or p > 1
      • createSampler

        public ContinuousDistribution.Sampler createSampler​(org.apache.commons.rng.UniformRandomProvider rng)
        Creates a sampler.
        Specified by:
        createSampler in interface ContinuousDistribution
        Parameters:
        rng - Generator of uniformly distributed numbers.
        Returns:
        a sampler that produces random numbers according this distribution.