1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 package org.apache.commons.statistics.inference;
19
20 import java.util.Arrays;
21 import java.util.Objects;
22 import java.util.function.DoubleSupplier;
23 import java.util.function.DoubleUnaryOperator;
24 import java.util.function.IntToDoubleFunction;
25 import org.apache.commons.numbers.combinatorics.BinomialCoefficientDouble;
26 import org.apache.commons.numbers.combinatorics.Factorial;
27 import org.apache.commons.numbers.core.ArithmeticUtils;
28 import org.apache.commons.numbers.core.Sum;
29 import org.apache.commons.rng.UniformRandomProvider;
30
31 /**
32 * Implements the Kolmogorov-Smirnov (K-S) test for equality of continuous distributions.
33 *
34 * <p>The one-sample test uses a D statistic based on the maximum deviation of the empirical
35 * distribution of sample data points from the distribution expected under the null hypothesis.
36 *
37 * <p>The two-sample test uses a D statistic based on the maximum deviation of the two empirical
38 * distributions of sample data points. The two-sample tests evaluate the null hypothesis that
39 * the two samples {@code x} and {@code y} come from the same underlying distribution.
40 *
41 * <p>References:
42 * <ol>
43 * <li>
44 * Marsaglia, G., Tsang, W. W., & Wang, J. (2003).
45 * <a href="https://doi.org/10.18637/jss.v008.i18">Evaluating Kolmogorov's Distribution.</a>
46 * Journal of Statistical Software, 8(18), 1–4.
47 * <li>Simard, R., & L’Ecuyer, P. (2011).
48 * <a href="https://doi.org/10.18637/jss.v039.i11">Computing the Two-Sided Kolmogorov-Smirnov Distribution.</a>
49 * Journal of Statistical Software, 39(11), 1–18.
50 * <li>Sekhon, J. S. (2011).
51 * <a href="https://doi.org/10.18637/jss.v042.i07">
52 * Multivariate and Propensity Score Matching Software with Automated Balance Optimization:
53 * The Matching package for R.</a>
54 * Journal of Statistical Software, 42(7), 1–52.
55 * <li>Viehmann, T (2021).
56 * <a href="https://doi.org/10.48550/arXiv.2102.08037">
57 * Numerically more stable computation of the p-values for the two-sample Kolmogorov-Smirnov test.</a>
58 * arXiv:2102.08037
59 * <li>Hodges, J. L. (1958).
60 * <a href="https://doi.org/10.1007/BF02589501">
61 * The significance probability of the smirnov two-sample test.</a>
62 * Arkiv for Matematik, 3(5), 469-486.
63 * </ol>
64 *
65 * <p>Note that [1] contains an error in computing h, refer to <a
66 * href="https://issues.apache.org/jira/browse/MATH-437">MATH-437</a> for details.
67 *
68 * @see <a href="https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test">
69 * Kolmogorov-Smirnov (K-S) test (Wikipedia)</a>
70 * @since 1.1
71 */
72 public final class KolmogorovSmirnovTest {
73 /** Name for sample 1. */
74 private static final String SAMPLE_1_NAME = "Sample 1";
75 /** Name for sample 2. */
76 private static final String SAMPLE_2_NAME = "Sample 2";
77 /** When the largest sample size exceeds this value, 2-sample test AUTO p-value
78 * uses an asymptotic distribution to compute the p-value. */
79 private static final int LARGE_SAMPLE = 10000;
80 /** Maximum finite factorial. */
81 private static final int MAX_FACTORIAL = 170;
82 /** Maximum length of an array. This is used to determine if two arrays can be concatenated
83 * to create a sampler from the joint distribution. The limit is copied from the limit
84 * of java.util.ArrayList. */
85 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
86 /** The maximum least common multiple (lcm) to attempt the exact p-value computation.
87 * The integral d value is in [0, n*m] in steps of the greatest common denominator (gcd),
88 * thus lcm = n*m/gcd is the number of possible different p-values.
89 * Some methods have a lower limit due to computation limits. This should be larger
90 * than LARGE_SAMPLE^2 so all AUTO p-values attempt an exact computation, i.e.
91 * at least 10000^2 ~ 2^26.56. */
92 private static final long MAX_LCM_TWO_SAMPLE_EXACT_P = 1L << 31;
93 /** Placeholder to use for the two-sample sign array when the value can be ignored. */
94 private static final int[] IGNORED_SIGN = new int[1];
95 /** Placeholder to use for the two-sample ties D array when the value can be ignored. */
96 private static final long[] IGNORED_D = new long[2];
97 /** Default instance. */
98 private static final KolmogorovSmirnovTest DEFAULT = new KolmogorovSmirnovTest(
99 AlternativeHypothesis.TWO_SIDED, PValueMethod.AUTO, false, null, 1000);
100
101 /** Alternative hypothesis. */
102 private final AlternativeHypothesis alternative;
103 /** Method to compute the p-value. */
104 private final PValueMethod pValueMethod;
105 /** Use a strict inequality for the two-sample exact p-value. */
106 private final boolean strictInequality;
107 /** Source of randomness. */
108 private final UniformRandomProvider rng;
109 /** Number of iterations . */
110 private final int iterations;
111
112 /**
113 * Result for the one-sample Kolmogorov-Smirnov test.
114 *
115 * <p>This class is immutable.
116 *
117 * @since 1.1
118 */
119 public static class OneResult extends BaseSignificanceResult {
120 /** Sign of the statistic. */
121 private final int sign;
122
123 /**
124 * Create an instance.
125 *
126 * @param statistic Test statistic.
127 * @param sign Sign of the statistic.
128 * @param p Result p-value.
129 */
130 OneResult(double statistic, int sign, double p) {
131 super(statistic, p);
132 this.sign = sign;
133 }
134
135 /**
136 * Gets the sign of the statistic. This is 1 for \(D^+\) and -1 for \(D^-\).
137 * For a two sided-test this is zero if the magnitude of \(D^+\) and \(D^-\) was equal;
138 * otherwise the sign indicates the larger of \(D^+\) or \(D^-\).
139 *
140 * @return the sign
141 */
142 public int getSign() {
143 return sign;
144 }
145 }
146
147 /**
148 * Result for the two-sample Kolmogorov-Smirnov test.
149 *
150 * <p>This class is immutable.
151 *
152 * @since 1.1
153 */
154 public static final class TwoResult extends OneResult {
155 /** Flag to indicate there were significant ties.
156 * Note that in extreme cases there may be significant ties despite {@code upperD == D}
157 * due to rounding when converting the integral statistic to a double. For this
158 * reason the presence of ties is stored as a flag. */
159 private final boolean significantTies;
160 /** Upper bound of the D statistic from all possible paths through regions with ties. */
161 private final double upperD;
162 /** The p-value of the upper D value. */
163 private final double upperP;
164
165 /**
166 * Create an instance.
167 *
168 * @param statistic Test statistic.
169 * @param sign Sign of the statistic.
170 * @param p Result p-value.
171 * @param significantTies Flag to indicate there were significant ties.
172 * @param upperD Upper bound of the D statistic from all possible paths through
173 * regions with ties.
174 * @param upperP The p-value of the upper D value.
175 */
176 TwoResult(double statistic, int sign, double p, boolean significantTies, double upperD, double upperP) {
177 super(statistic, sign, p);
178 this.significantTies = significantTies;
179 this.upperD = upperD;
180 this.upperP = upperP;
181 }
182
183 /**
184 * {@inheritDoc}
185 *
186 * <p><strong>Ties</strong>
187 *
188 * <p>The presence of ties in the data creates a distribution for the D values generated
189 * by all possible orderings of the tied regions. This statistic is computed using the
190 * path with the <em>minimum</em> effect on the D statistic.
191 *
192 * <p>For a one-sided statistic \(D^+\) or \(D^-\), this is the lower bound of the D statistic.
193 *
194 * <p>For a two-sided statistic D, this may be <em>below</em> the lower bound of the
195 * distribution of all possible D values. This case occurs when the number of ties
196 * is very high and is identified by a {@link #getPValue() p-value} of 1.
197 *
198 * <p>If the two-sided statistic is zero this only occurs in the presence of ties:
199 * either the two arrays are identical, are 'identical' data of a single value
200 * (sample sizes may be different), or have a sequence of ties of 'identical' data
201 * with a net zero effect on the D statistic, e.g.
202 * <pre>
203 * [1,2,3] vs [1,2,3]
204 * [0,0,0,0] vs [0,0,0]
205 * [0,0,0,0,1,1,1,1] vs [0,0,0,1,1,1]
206 * </pre>
207 */
208 @Override
209 public double getStatistic() {
210 // Note: This method is here for documentation
211 return super.getStatistic();
212 }
213
214 /**
215 * Returns {@code true} if there were ties between samples that occurred
216 * in a region which could change the D statistic if the ties were resolved to
217 * a defined order.
218 *
219 * <p>Ties between the data can be interpreted as if the values were different
220 * but within machine epsilon. In this case the order within the tie region is not known.
221 * If the most extreme ordering of any tied regions (e.g. all tied values of {@code x}
222 * before all tied values of {@code y}) could create a larger D statistic this
223 * method will return {@code true}.
224 *
225 * <p>If there were no ties, or all possible orderings of tied regions create the same
226 * D statistic, this method returns {@code false}.
227 *
228 * <p>Note it is possible that this method returns {@code true} when {@code D == upperD}
229 * due to rounding when converting the computed D statistic to a double. This will
230 * only occur for large sample sizes {@code n} and {@code m} where the product
231 * {@code n*m >= 2^53}.
232 *
233 * @return true if the D statistic could be changed by resolution of ties
234 * @see #getUpperD()
235 */
236 public boolean hasSignificantTies() {
237 return significantTies;
238 }
239
240 /**
241 * Return the upper bound of the D statistic from all possible paths through regions with ties.
242 *
243 * <p>This will return a value equal to or greater than {@link #getStatistic()}.
244 *
245 * @return the upper bound of D
246 * @see #hasSignificantTies()
247 */
248 public double getUpperD() {
249 return upperD;
250 }
251
252 /**
253 * Return the p-value of the upper bound of the D statistic.
254 *
255 * <p>If computed, this will return a value equal to or less than
256 * {@link #getPValue() getPValue}. It may be orders of magnitude smaller.
257 *
258 * <p>Note: This p-value corresponds to the most extreme p-value from all possible
259 * orderings of tied regions. It is <strong>not</strong> recommended to use this to
260 * reject the null hypothesis. The upper bound of D and the corresponding p-value
261 * provide information that must be interpreted in the context of the sample data and
262 * used to inform a decision on the suitability of the test to the data.
263 *
264 * <p>This value is set to {@link Double#NaN NaN} if the {@link #getPValue() p-value} was
265 * {@linkplain PValueMethod#ESTIMATE estimated}. The estimated p-value will have been created
266 * using a distribution of possible D values given the underlying joint distribution of
267 * the sample data. Comparison of the p-value to the upper p-value is not applicable.
268 *
269 * @return the p-value of the upper bound of D (or NaN)
270 * @see #getUpperD()
271 */
272 public double getUpperPValue() {
273 return upperP;
274 }
275 }
276
277 /**
278 * @param alternative Alternative hypothesis.
279 * @param method P-value method.
280 * @param strict true to use a strict inequality.
281 * @param rng Source of randomness.
282 * @param iterations Number of iterations.
283 */
284 private KolmogorovSmirnovTest(AlternativeHypothesis alternative, PValueMethod method, boolean strict,
285 UniformRandomProvider rng, int iterations) {
286 this.alternative = alternative;
287 this.pValueMethod = method;
288 this.strictInequality = strict;
289 this.rng = rng;
290 this.iterations = iterations;
291 }
292
293 /**
294 * Return an instance using the default options.
295 *
296 * <ul>
297 * <li>{@link AlternativeHypothesis#TWO_SIDED}
298 * <li>{@link PValueMethod#AUTO}
299 * <li>{@link Inequality#NON_STRICT}
300 * <li>{@linkplain #with(UniformRandomProvider) RNG = none}
301 * <li>{@linkplain #withIterations(int) Iterations = 1000}
302 * </ul>
303 *
304 * @return default instance
305 */
306 public static KolmogorovSmirnovTest withDefaults() {
307 return DEFAULT;
308 }
309
310 /**
311 * Return an instance with the configured alternative hypothesis.
312 *
313 * @param v Value.
314 * @return an instance
315 */
316 public KolmogorovSmirnovTest with(AlternativeHypothesis v) {
317 return new KolmogorovSmirnovTest(Objects.requireNonNull(v), pValueMethod, strictInequality, rng, iterations);
318 }
319
320 /**
321 * Return an instance with the configured p-value method.
322 *
323 * <p>For the one-sample two-sided test Kolmogorov's asymptotic approximation can be used;
324 * otherwise the p-value uses the distribution of the D statistic.
325 *
326 * <p>For the two-sample test the exact p-value can be computed for small sample sizes;
327 * otherwise the p-value resorts to the asymptotic approximation. Alternatively a p-value
328 * can be estimated from the combined distribution of the samples. This requires a source
329 * of randomness.
330 *
331 * @param v Value.
332 * @return an instance
333 * @see #with(UniformRandomProvider)
334 */
335 public KolmogorovSmirnovTest with(PValueMethod v) {
336 return new KolmogorovSmirnovTest(alternative, Objects.requireNonNull(v), strictInequality, rng, iterations);
337 }
338
339 /**
340 * Return an instance with the configured inequality.
341 *
342 * <p>Computes the p-value for the two-sample test as \(P(D_{n,m} > d)\) if strict;
343 * otherwise \(P(D_{n,m} \ge d)\), where \(D_{n,m}\) is the 2-sample
344 * Kolmogorov-Smirnov statistic, either the two-sided \(D_{n,m}\) or one-sided
345 * \(D_{n,m}^+\) or \(D_{n,m}^-\).
346 *
347 * @param v Value.
348 * @return an instance
349 */
350 public KolmogorovSmirnovTest with(Inequality v) {
351 return new KolmogorovSmirnovTest(alternative, pValueMethod,
352 Objects.requireNonNull(v) == Inequality.STRICT, rng, iterations);
353 }
354
355 /**
356 * Return an instance with the configured source of randomness.
357 *
358 * <p>Applies to the two-sample test when the p-value method is set to
359 * {@link PValueMethod#ESTIMATE ESTIMATE}. The randomness
360 * is used for sampling of the combined distribution.
361 *
362 * <p>There is no default source of randomness. If the randomness is not
363 * set then estimation is not possible and an {@link IllegalStateException} will be
364 * raised in the two-sample test.
365 *
366 * @param v Value.
367 * @return an instance
368 * @see #with(PValueMethod)
369 */
370 public KolmogorovSmirnovTest with(UniformRandomProvider v) {
371 return new KolmogorovSmirnovTest(alternative, pValueMethod, strictInequality,
372 Objects.requireNonNull(v), iterations);
373 }
374
375 /**
376 * Return an instance with the configured number of iterations.
377 *
378 * <p>Applies to the two-sample test when the p-value method is set to
379 * {@link PValueMethod#ESTIMATE ESTIMATE}. This is the number of sampling iterations
380 * used to estimate the p-value. The p-value is a fraction using the {@code iterations}
381 * as the denominator. The number of significant digits in the p-value is
382 * upper bounded by log<sub>10</sub>(iterations); small p-values have fewer significant
383 * digits. A large number of iterations is recommended when using a small critical
384 * value to reject the null hypothesis.
385 *
386 * @param v Value.
387 * @return an instance
388 * @throws IllegalArgumentException if the number of iterations is not strictly positive
389 */
390 public KolmogorovSmirnovTest withIterations(int v) {
391 return new KolmogorovSmirnovTest(alternative, pValueMethod, strictInequality, rng,
392 Arguments.checkStrictlyPositive(v));
393 }
394
395 /**
396 * Computes the one-sample Kolmogorov-Smirnov test statistic.
397 *
398 * <ul>
399 * <li>two-sided: \(D_n=\sup_x |F_n(x)-F(x)|\)
400 * <li>greater: \(D_n^+=\sup_x (F_n(x)-F(x))\)
401 * <li>less: \(D_n^-=\sup_x (F(x)-F_n(x))\)
402 * </ul>
403 *
404 * <p>where \(F\) is the distribution cumulative density function ({@code cdf}),
405 * \(n\) is the length of {@code x} and \(F_n\) is the empirical distribution that puts
406 * mass \(1/n\) at each of the values in {@code x}.
407 *
408 * <p>The cumulative distribution function should map a real value {@code x} to a probability
409 * in [0, 1]. To use a reference distribution the CDF can be passed using a method reference:
410 * <pre>
411 * UniformContinuousDistribution dist = UniformContinuousDistribution.of(0, 1);
412 * UniformRandomProvider rng = RandomSource.KISS.create(123);
413 * double[] x = dist.sampler(rng).samples(100);
414 * double d = KolmogorovSmirnovTest.withDefaults().statistic(x, dist::cumulativeProbability);
415 * </pre>
416 *
417 * @param cdf Reference cumulative distribution function.
418 * @param x Sample being evaluated.
419 * @return Kolmogorov-Smirnov statistic
420 * @throws IllegalArgumentException if {@code data} does not have length at least 2; or contains NaN values.
421 * @see #test(double[], DoubleUnaryOperator)
422 */
423 public double statistic(double[] x, DoubleUnaryOperator cdf) {
424 return computeStatistic(x, cdf, IGNORED_SIGN);
425 }
426
427 /**
428 * Computes the two-sample Kolmogorov-Smirnov test statistic.
429 *
430 * <ul>
431 * <li>two-sided: \(D_{n,m}=\sup_x |F_n(x)-F_m(x)|\)
432 * <li>greater: \(D_{n,m}^+=\sup_x (F_n(x)-F_m(x))\)
433 * <li>less: \(D_{n,m}^-=\sup_x (F_m(x)-F_n(x))\)
434 * </ul>
435 *
436 * <p>where \(n\) is the length of {@code x}, \(m\) is the length of {@code y}, \(F_n\) is the
437 * empirical distribution that puts mass \(1/n\) at each of the values in {@code x} and \(F_m\)
438 * is the empirical distribution that puts mass \(1/m\) at each of the values in {@code y}.
439 *
440 * @param x First sample.
441 * @param y Second sample.
442 * @return Kolmogorov-Smirnov statistic
443 * @throws IllegalArgumentException if either {@code x} or {@code y} does not
444 * have length at least 2; or contain NaN values.
445 * @see #test(double[], double[])
446 */
447 public double statistic(double[] x, double[] y) {
448 final int n = checkArrayLength(x);
449 final int m = checkArrayLength(y);
450 // Clone to avoid destructive modification of input
451 final long dnm = computeIntegralKolmogorovSmirnovStatistic(x.clone(), y.clone(),
452 IGNORED_SIGN, IGNORED_D);
453 // Re-use the method to compute D in [0, 1] for consistency
454 return computeD(dnm, n, m, ArithmeticUtils.gcd(n, m));
455 }
456
457 /**
458 * Performs a one-sample Kolmogorov-Smirnov test evaluating the null hypothesis
459 * that {@code x} conforms to the distribution cumulative density function ({@code cdf}).
460 *
461 * <p>The test is defined by the {@link AlternativeHypothesis}:
462 * <ul>
463 * <li>Two-sided evaluates the null hypothesis that the two distributions are
464 * identical, \(F_n(i) = F(i)\) for all \( i \); the alternative is that the are not
465 * identical. The statistic is \( max(D_n^+, D_n^-) \) and the sign of \( D \) is provided.
466 * <li>Greater evaluates the null hypothesis that the \(F_n(i) <= F(i)\) for all \( i \);
467 * the alternative is \(F_n(i) > F(i)\) for at least one \( i \). The statistic is \( D_n^+ \).
468 * <li>Less evaluates the null hypothesis that the \(F_n(i) >= F(i)\) for all \( i \);
469 * the alternative is \(F_n(i) < F(i)\) for at least one \( i \). The statistic is \( D_n^- \).
470 * </ul>
471 *
472 * <p>The p-value method defaults to exact. The one-sided p-value uses Smirnov's stable formula:
473 *
474 * <p>\[ P(D_n^+ \ge x) = x \sum_{j=0}^{\lfloor n(1-x) \rfloor} \binom{n}{j} \left(\frac{j}{n} + x\right)^{j-1} \left(1-x-\frac{j}{n} \right)^{n-j} \]
475 *
476 * <p>The two-sided p-value is computed using methods described in
477 * Simard & L’Ecuyer (2011). The two-sided test supports an asymptotic p-value
478 * using Kolmogorov's formula:
479 *
480 * <p>\[ \lim_{n\to\infty} P(\sqrt{n}D_n > z) = 2 \sum_{i=1}^\infty (-1)^{i-1} e^{-2 i^2 z^2} \]
481 *
482 * @param x Sample being being evaluated.
483 * @param cdf Reference cumulative distribution function.
484 * @return test result
485 * @throws IllegalArgumentException if {@code data} does not have length at least 2; or contains NaN values.
486 * @see #statistic(double[], DoubleUnaryOperator)
487 */
488 public OneResult test(double[] x, DoubleUnaryOperator cdf) {
489 final int[] sign = {0};
490 final double d = computeStatistic(x, cdf, sign);
491 final double p;
492 if (alternative == AlternativeHypothesis.TWO_SIDED) {
493 PValueMethod method = pValueMethod;
494 if (method == PValueMethod.AUTO) {
495 // No switch to the asymptotic for large n
496 method = PValueMethod.EXACT;
497 }
498 if (method == PValueMethod.ASYMPTOTIC) {
499 // Kolmogorov's asymptotic formula using z = sqrt(n) * d
500 p = KolmogorovSmirnovDistribution.ksSum(Math.sqrt(x.length) * d);
501 } else {
502 // exact
503 p = KolmogorovSmirnovDistribution.Two.sf(d, x.length);
504 }
505 } else {
506 // one-sided: always use exact
507 p = KolmogorovSmirnovDistribution.One.sf(d, x.length);
508 }
509 return new OneResult(d, sign[0], p);
510 }
511
512 /**
513 * Performs a two-sample Kolmogorov-Smirnov test on samples {@code x} and {@code y}.
514 * Test the empirical distributions \(F_n\) and \(F_m\) where \(n\) is the length
515 * of {@code x}, \(m\) is the length of {@code y}, \(F_n\) is the empirical distribution
516 * that puts mass \(1/n\) at each of the values in {@code x} and \(F_m\) is the empirical
517 * distribution that puts mass \(1/m\) of the {@code y} values.
518 *
519 * <p>The test is defined by the {@link AlternativeHypothesis}:
520 * <ul>
521 * <li>Two-sided evaluates the null hypothesis that the two distributions are
522 * identical, \(F_n(i) = F_m(i)\) for all \( i \); the alternative is that they are not
523 * identical. The statistic is \( max(D_n^+, D_n^-) \) and the sign of \( D \) is provided.
524 * <li>Greater evaluates the null hypothesis that the \(F_n(i) <= F_m(i)\) for all \( i \);
525 * the alternative is \(F_n(i) > F_m(i)\) for at least one \( i \). The statistic is \( D_n^+ \).
526 * <li>Less evaluates the null hypothesis that the \(F_n(i) >= F_m(i)\) for all \( i \);
527 * the alternative is \(F_n(i) < F_m(i)\) for at least one \( i \). The statistic is \( D_n^- \).
528 * </ul>
529 *
530 * <p>If the {@linkplain PValueMethod p-value method} is auto, then an exact p computation
531 * is attempted if both sample sizes are less than 10000 using the methods presented in
532 * Viehmann (2021) and Hodges (1958); otherwise an asymptotic p-value is returned.
533 * The two-sided p-value is \(\overline{F}(d, \sqrt{mn / (m + n)})\) where \(\overline{F}\)
534 * is the complementary cumulative density function of the two-sided one-sample
535 * Kolmogorov-Smirnov distribution. The one-sided p-value uses an approximation from
536 * Hodges (1958) Eq 5.3.
537 *
538 * <p>\(D_{n,m}\) has a discrete distribution. This makes the p-value associated with the
539 * null hypothesis \(H_0 : D_{n,m} \gt d \) differ from \(H_0 : D_{n,m} \ge d \)
540 * by the mass of the observed value \(d\). These can be distinguished using an
541 * {@link Inequality} parameter. This is ignored for large samples.
542 *
543 * <p>If the data contains ties there is no defined ordering in the tied region to use
544 * for the difference between the two empirical distributions. Each ordering of the
545 * tied region <em>may</em> create a different D statistic. All possible orderings
546 * generate a distribution for the D value. In this case the tied region is traversed
547 * entirely and the effect on the D value evaluated at the end of the tied region.
548 * This is the path with the least change on the D statistic. The path with the
549 * greatest change on the D statistic is also computed as the upper bound on D.
550 * If these two values are different then the tied region is known to generate a
551 * distribution for the D statistic and the p-value is an over estimate for the cases
552 * with a larger D statistic. The presence of any significant tied regions is returned
553 * in the result.
554 *
555 * <p>If the p-value method is {@link PValueMethod#ESTIMATE ESTIMATE} then the p-value is
556 * estimated by repeat sampling of the joint distribution of {@code x} and {@code y}.
557 * The p-value is the frequency that a sample creates a D statistic
558 * greater than or equal to (or greater than for strict inequality) the observed value.
559 * In this case a source of randomness must be configured or an {@link IllegalStateException}
560 * will be raised. The p-value for the upper bound on D will not be estimated and is set to
561 * {@link Double#NaN NaN}. This estimation procedure is not affected by ties in the data
562 * and is increasingly robust for larger datasets. The method is modeled after
563 * <a href="https://sekhon.berkeley.edu/matching/ks.boot.html">ks.boot</a>
564 * in the R {@code Matching} package (Sekhon (2011)).
565 *
566 * @param x First sample.
567 * @param y Second sample.
568 * @return test result
569 * @throws IllegalArgumentException if either {@code x} or {@code y} does not
570 * have length at least 2; or contain NaN values.
571 * @throws IllegalStateException if the p-value method is {@link PValueMethod#ESTIMATE ESTIMATE}
572 * and there is no source of randomness.
573 * @see #statistic(double[], double[])
574 */
575 public TwoResult test(double[] x, double[] y) {
576 final int n = checkArrayLength(x);
577 final int m = checkArrayLength(y);
578 PValueMethod method = pValueMethod;
579 final int[] sign = {0};
580 final long[] tiesD = {0, 0};
581
582 final double[] sx = x.clone();
583 final double[] sy = y.clone();
584 final long dnm = computeIntegralKolmogorovSmirnovStatistic(sx, sy, sign, tiesD);
585
586 // Compute p-value. Note that the p-value is not invalidated by ties; it is the
587 // D statistic that could be invalidated by resolution of the ties. So compute
588 // the exact p even if ties are present.
589 if (method == PValueMethod.AUTO) {
590 // Use exact for small samples
591 method = Math.max(n, m) < LARGE_SAMPLE ?
592 PValueMethod.EXACT :
593 PValueMethod.ASYMPTOTIC;
594 }
595 final int gcd = ArithmeticUtils.gcd(n, m);
596 final double d = computeD(dnm, n, m, gcd);
597 final boolean significantTies = tiesD[1] > dnm;
598 final double d2 = significantTies ? computeD(tiesD[1], n, m, gcd) : d;
599
600 final double p;
601 double p2;
602
603 // Allow bootstrap estimation of the p-value
604 if (method == PValueMethod.ESTIMATE) {
605 p = estimateP(sx, sy, dnm);
606 p2 = Double.NaN;
607 } else {
608 final boolean exact = method == PValueMethod.EXACT;
609 p = p2 = twoSampleP(dnm, n, m, gcd, d, exact);
610 if (significantTies) {
611 // Compute the upper bound on D.
612 // The p-value is also computed. The alternative is to save the options
613 // in the result with (upper dnm, n, m) and compute it on-demand.
614 // Note detection of whether the exact P computation is possible is based on
615 // n and m, thus this will use the same computation.
616 p2 = twoSampleP(tiesD[1], n, m, gcd, d2, exact);
617 }
618 }
619 return new TwoResult(d, sign[0], p, significantTies, d2, p2);
620 }
621
622 /**
623 * Estimates the <i>p-value</i> of a two-sample Kolmogorov-Smirnov test evaluating the
624 * null hypothesis that {@code x} and {@code y} are samples drawn from the same
625 * probability distribution.
626 *
627 * <p>This method will destructively modify the input arrays (via a sort).
628 *
629 * <p>This method estimates the p-value by repeatedly sampling sets of size
630 * {@code x.length} and {@code y.length} from the empirical distribution
631 * of the combined sample. The memory requirement is an array copy of each of
632 * the input arguments.
633 *
634 * <p>When using strict inequality, this is equivalent to the algorithm implemented in
635 * the R function {@code ks.boot} as described in Sekhon (2011) Journal of Statistical
636 * Software, 42(7), 1–52 [3].
637 *
638 * @param x First sample.
639 * @param y Second sample.
640 * @param dnm Integral D statistic.
641 * @return p-value
642 * @throws IllegalStateException if the source of randomness is null.
643 */
644 private double estimateP(double[] x, double[] y, long dnm) {
645 if (rng == null) {
646 throw new IllegalStateException("No source of randomness");
647 }
648
649 // Test if the random statistic is greater (strict), or greater or equal to d
650 final long d = strictInequality ? dnm : dnm - 1;
651
652 final long plus;
653 final long minus;
654 if (alternative == AlternativeHypothesis.GREATER_THAN) {
655 plus = d;
656 minus = Long.MIN_VALUE;
657 } else if (alternative == AlternativeHypothesis.LESS_THAN) {
658 plus = Long.MAX_VALUE;
659 minus = -d;
660 } else {
661 // two-sided
662 plus = d;
663 minus = -d;
664 }
665
666 // Test dnm=0. This occurs for example when x == y.
667 if (0 < minus || 0 > plus) {
668 // Edge case where all possible d will be outside the inclusive bounds
669 return 1;
670 }
671
672 // Sample randomly with replacement from the combined distribution.
673 final DoubleSupplier gen = createSampler(x, y, rng);
674 int count = 0;
675 for (int i = iterations; i > 0; i--) {
676 for (int j = 0; j < x.length; j++) {
677 x[j] = gen.getAsDouble();
678 }
679 for (int j = 0; j < y.length; j++) {
680 y[j] = gen.getAsDouble();
681 }
682 if (testIntegralKolmogorovSmirnovStatistic(x, y, plus, minus)) {
683 count++;
684 }
685 }
686 return count / (double) iterations;
687 }
688
689 /**
690 * Computes the magnitude of the one-sample Kolmogorov-Smirnov test statistic.
691 * The sign of the statistic is optionally returned in {@code sign}. For the two-sided case
692 * the sign is 0 if the magnitude of D+ and D- was equal; otherwise it indicates which D
693 * had the larger magnitude.
694 *
695 * @param x Sample being evaluated.
696 * @param cdf Reference cumulative distribution function.
697 * @param sign Sign of the statistic (non-zero length).
698 * @return Kolmogorov-Smirnov statistic
699 * @throws IllegalArgumentException if {@code data} does not have length at least 2;
700 * or contains NaN values.
701 */
702 private double computeStatistic(double[] x, DoubleUnaryOperator cdf, int[] sign) {
703 final int n = checkArrayLength(x);
704 final double nd = n;
705 final double[] sx = sort(x.clone(), "Sample");
706 // Note: ties in the data do not matter as we compare the empirical CDF
707 // immediately before the value (i/n) and at the value (i+1)/n. For ties
708 // of length m this would be (i-m+1)/n and (i+1)/n and the result is the same.
709 double d = 0;
710 if (alternative == AlternativeHypothesis.GREATER_THAN) {
711 // Compute D+
712 for (int i = 0; i < n; i++) {
713 final double yi = cdf.applyAsDouble(sx[i]);
714 final double dp = (i + 1) / nd - yi;
715 d = dp > d ? dp : d;
716 }
717 sign[0] = 1;
718 } else if (alternative == AlternativeHypothesis.LESS_THAN) {
719 // Compute D-
720 for (int i = 0; i < n; i++) {
721 final double yi = cdf.applyAsDouble(sx[i]);
722 final double dn = yi - i / nd;
723 d = dn > d ? dn : d;
724 }
725 sign[0] = -1;
726 } else {
727 // Two sided.
728 // Compute both (as unsigned) and return the sign indicating the largest result.
729 double plus = 0;
730 double minus = 0;
731 for (int i = 0; i < n; i++) {
732 final double yi = cdf.applyAsDouble(sx[i]);
733 final double dn = yi - i / nd;
734 final double dp = (i + 1) / nd - yi;
735 minus = dn > minus ? dn : minus;
736 plus = dp > plus ? dp : plus;
737 }
738 sign[0] = Double.compare(plus, minus);
739 d = Math.max(plus, minus);
740 }
741 return d;
742 }
743
744 /**
745 * Computes the two-sample Kolmogorov-Smirnov test statistic. The statistic is integral
746 * and has a value in {@code [0, n*m]}. Not all values are possible; the smallest
747 * increment is the greatest common divisor of {@code n} and {@code m}.
748 *
749 * <p>This method will destructively modify the input arrays (via a sort).
750 *
751 * <p>The sign of the statistic is returned in {@code sign}. For the two-sided case
752 * the sign is 0 if the magnitude of D+ and D- was equal; otherwise it indicates which D
753 * had the larger magnitude. If the two-sided statistic is zero the two arrays are
754 * identical, or are 'identical' data of a single value (sample sizes may be different),
755 * or have a sequence of ties of 'identical' data with a net zero effect on the D statistic
756 * e.g.
757 * <pre>
758 * [1,2,3] vs [1,2,3]
759 * [0,0,0,0] vs [0,0,0]
760 * [0,0,0,0,1,1,1,1] vs [0,0,0,1,1,1]
761 * </pre>
762 *
763 * <p>This method detects ties in the input data. Not all ties will invalidate the returned
764 * statistic. Ties between the data can be interpreted as if the values were different
765 * but within machine epsilon. In this case the path through the tie region is not known.
766 * All paths through the tie region end at the same point. This method will compute the
767 * most extreme path through each tie region and the D statistic for these paths. If the
768 * ties D statistic is a larger magnitude than the returned D statistic then at least
769 * one tie region lies at a point on the full path that could result in a different
770 * statistic in the absence of ties. This signals the P-value computed using the returned
771 * D statistic is one of many possible p-values given the data and how ties are resolved.
772 * Note: The tiesD value may be smaller than the returned D statistic as it is not set
773 * to the maximum of D or tiesD. The only result of interest is when {@code tiesD > D}
774 * due to a tie region that can change the output D. On output {@code tiesD[0] != 0}
775 * if there were ties between samples and {@code tiesD[1] = D} of the most extreme path
776 * through the ties.
777 *
778 * @param x First sample (destructively modified by sort).
779 * @param y Second sample (destructively modified by sort).
780 * @param sign Sign of the statistic (non-zero length).
781 * @param tiesD Integral statistic for the most extreme path through any ties (length at least 2).
782 * @return integral Kolmogorov-Smirnov statistic
783 * @throws IllegalArgumentException if either {@code x} or {@code y} contain NaN values.
784 */
785 private long computeIntegralKolmogorovSmirnovStatistic(double[] x, double[] y, int[] sign, long[] tiesD) {
786 // Sort the sample arrays
787 sort(x, SAMPLE_1_NAME);
788 sort(y, SAMPLE_2_NAME);
789 final int n = x.length;
790 final int m = y.length;
791
792 // CDFs range from 0 to 1 using increments of 1/n and 1/m for x and y respectively.
793 // Scale by n*m to use increments of m and n for x and y.
794 // Find the max difference between cdf_x and cdf_y.
795 int i = 0;
796 int j = 0;
797 long d = 0;
798 long plus = 0;
799 long minus = 0;
800 // Ties: store the D+,D- for most extreme path though tie region(s)
801 long tplus = 0;
802 long tminus = 0;
803 do {
804 // No NaNs so compare using < and >
805 if (x[i] < y[j]) {
806 final double z = x[i];
807 do {
808 i++;
809 d += m;
810 } while (i < n && x[i] == z);
811 plus = d > plus ? d : plus;
812 } else if (x[i] > y[j]) {
813 final double z = y[j];
814 do {
815 j++;
816 d -= n;
817 } while (j < m && y[j] == z);
818 minus = d < minus ? d : minus;
819 } else {
820 // Traverse to the end of the tied section for d.
821 // Also compute the most extreme path through the tied region.
822 final double z = x[i];
823 final long dd = d;
824 int k = i;
825 do {
826 i++;
827 } while (i < n && x[i] == z);
828 k = i - k;
829 d += k * (long) m;
830 // Extreme D+ path
831 tplus = d > tplus ? d : tplus;
832 k = j;
833 do {
834 j++;
835 } while (j < m && y[j] == z);
836 k = j - k;
837 d -= k * (long) n;
838 // Extreme D- path must start at the original d
839 tminus = Math.min(tminus, dd - k * (long) n);
840 // End of tied section
841 if (d > plus) {
842 plus = d;
843 } else if (d < minus) {
844 minus = d;
845 }
846 }
847 } while (i < n && j < m);
848 // The presence of any ties is flagged by a non-zero value for D+ or D-.
849 // Note we cannot use the selected tiesD value as in the one-sided case it may be zero
850 // and the non-selected D value will be non-zero.
851 tiesD[0] = tplus | tminus;
852 // For simplicity the correct tiesD is not returned (correct value is commented).
853 // The only case that matters is tiesD > D which is evaluated by the caller.
854 // Note however that the distance of tiesD < D is a measure of how little the
855 // tied region matters.
856 if (alternative == AlternativeHypothesis.GREATER_THAN) {
857 sign[0] = 1;
858 // correct = max(tplus, plus)
859 tiesD[1] = tplus;
860 return plus;
861 } else if (alternative == AlternativeHypothesis.LESS_THAN) {
862 sign[0] = -1;
863 // correct = -min(tminus, minus)
864 tiesD[1] = -tminus;
865 return -minus;
866 } else {
867 // Two sided.
868 sign[0] = Double.compare(plus, -minus);
869 d = Math.max(plus, -minus);
870 // correct = max(d, max(tplus, -tminus))
871 tiesD[1] = Math.max(tplus, -tminus);
872 return d;
873 }
874 }
875
876 /**
877 * Test if the two-sample integral Kolmogorov-Smirnov statistic is strictly greater
878 * than the specified values for D+ and D-. Note that D- should have a negative sign
879 * to impose an inclusive lower bound.
880 *
881 * <p>This method will destructively modify the input arrays (via a sort).
882 *
883 * <p>For a two-sided alternative hypothesis {@code plus} and {@code minus} should have the
884 * same magnitude with opposite signs.
885 *
886 * <p>For a one-sided alternative hypothesis the value of {@code plus} or {@code minus}
887 * should have the expected value of the statistic, and the opposite D should have the maximum
888 * or minimum long value. The {@code minus} should be negatively signed:
889 *
890 * <ul>
891 * <li>greater: {@code plus} = D, {@code minus} = {@link Long#MIN_VALUE}
892 * <li>greater: {@code minus} = -D, {@code plus} = {@link Long#MAX_VALUE}
893 * </ul>
894 *
895 * <p>Note: This method has not been specialized for the one-sided case. Specialization
896 * would eliminate a conditional branch for {@code d > Long.MAX_VALUE} or
897 * {@code d < Long.MIN_VALUE}. Since these branches are never possible in the one-sided case
898 * this should be efficiently chosen by branch prediction in a processor pipeline.
899 *
900 * @param x First sample (destructively modified by sort; must not contain NaN).
901 * @param y Second sample (destructively modified by sort; must not contain NaN).
902 * @param plus Limit on D+ (inclusive upper bound).
903 * @param minus Limit on D- (inclusive lower bound).
904 * @return true if the D value exceeds the provided limits
905 */
906 private static boolean testIntegralKolmogorovSmirnovStatistic(double[] x, double[] y, long plus, long minus) {
907 // Sort the sample arrays
908 Arrays.sort(x);
909 Arrays.sort(y);
910 final int n = x.length;
911 final int m = y.length;
912
913 // CDFs range from 0 to 1 using increments of 1/n and 1/m for x and y respectively.
914 // Scale by n*m to use increments of m and n for x and y.
915 // Find the any difference that exceeds the specified bounds.
916 int i = 0;
917 int j = 0;
918 long d = 0;
919 do {
920 // No NaNs so compare using < and >
921 if (x[i] < y[j]) {
922 final double z = x[i];
923 do {
924 i++;
925 d += m;
926 } while (i < n && x[i] == z);
927 if (d > plus) {
928 return true;
929 }
930 } else if (x[i] > y[j]) {
931 final double z = y[j];
932 do {
933 j++;
934 d -= n;
935 } while (j < m && y[j] == z);
936 if (d < minus) {
937 return true;
938 }
939 } else {
940 // Traverse to the end of the tied section for d.
941 final double z = x[i];
942 do {
943 i++;
944 d += m;
945 } while (i < n && x[i] == z);
946 do {
947 j++;
948 d -= n;
949 } while (j < m && y[j] == z);
950 // End of tied section
951 if (d > plus || d < minus) {
952 return true;
953 }
954 }
955 } while (i < n && j < m);
956 // Note: Here d requires returning to zero. This is applicable to the one-sided
957 // cases since d may have always been above zero (favours D+) or always below zero
958 // (favours D-). This is ignored as the method is not called when dnm=0 is
959 // outside the inclusive bounds.
960 return false;
961 }
962
963 /**
964 * Creates a sampler to sample randomly from the combined distribution of the two samples.
965 *
966 * @param x First sample.
967 * @param y Second sample.
968 * @param rng Source of randomness.
969 * @return the sampler
970 */
971 private static DoubleSupplier createSampler(double[] x, double[] y,
972 UniformRandomProvider rng) {
973 return createSampler(x, y, rng, MAX_ARRAY_SIZE);
974 }
975
976 /**
977 * Creates a sampler to sample randomly from the combined distribution of the two
978 * samples. This will copy the input data for the sampler.
979 *
980 * @param x First sample.
981 * @param y Second sample.
982 * @param rng Source of randomness.
983 * @param maxArraySize Maximum size of a single array.
984 * @return the sampler
985 */
986 static DoubleSupplier createSampler(double[] x, double[] y,
987 UniformRandomProvider rng,
988 int maxArraySize) {
989 final int n = x.length;
990 final int m = y.length;
991 final int len = n + m;
992 // Overflow safe: len > maxArraySize
993 if (len - maxArraySize > 0) {
994 // Support sampling with maximum length arrays
995 // (where a concatenated array is not possible)
996 // by choosing one or the other.
997 // - generate i in [-n, m)
998 // - return i < 0 ? x[n + i] : y[i]
999 // The sign condition is a 50-50 branch.
1000 // Perform branchless by extracting the sign bit to pick the array.
1001 // Copy the source data.
1002 final double[] xx = x.clone();
1003 final double[] yy = y.clone();
1004 final IntToDoubleFunction nextX = i -> xx[n + i];
1005 final IntToDoubleFunction nextY = i -> yy[i];
1006 // Arrange function which accepts the negative index at position [1]
1007 final IntToDoubleFunction[] next = {nextY, nextX};
1008 return () -> {
1009 final int i = rng.nextInt(-n, m);
1010 return next[i >>> 31].applyAsDouble(i);
1011 };
1012 }
1013 // Concatenate arrays
1014 final double[] z = new double[len];
1015 System.arraycopy(x, 0, z, 0, n);
1016 System.arraycopy(y, 0, z, n, m);
1017 return () -> z[rng.nextInt(len)];
1018 }
1019
1020 /**
1021 * Compute the D statistic from the integral D value.
1022 *
1023 * @param dnm Integral D-statistic value (in [0, n*m]).
1024 * @param n First sample size.
1025 * @param m Second sample size.
1026 * @param gcd Greatest common divisor of n and m.
1027 * @return D-statistic value (in [0, 1]).
1028 */
1029 private static double computeD(long dnm, int n, int m, int gcd) {
1030 // Note: Integer division using the gcd is intentional
1031 final long a = dnm / gcd;
1032 final int b = m / gcd;
1033 return a / ((double) n * b);
1034 }
1035
1036 /**
1037 * Computes \(P(D_{n,m} > d)\) for the 2-sample Kolmogorov-Smirnov statistic.
1038 *
1039 * @param dnm Integral D-statistic value (in [0, n*m]).
1040 * @param n First sample size.
1041 * @param m Second sample size.
1042 * @param gcd Greatest common divisor of n and m.
1043 * @param d D-statistic value (in [0, 1]).
1044 * @param exact whether to compute the exact probability; otherwise approximate.
1045 * @return probability
1046 * @see #twoSampleExactP(long, int, int, int, boolean, boolean)
1047 * @see #twoSampleApproximateP(double, int, int, boolean)
1048 */
1049 private double twoSampleP(long dnm, int n, int m, int gcd, double d, boolean exact) {
1050 // Exact computation returns -1 if it cannot compute.
1051 double p = -1;
1052 if (exact) {
1053 p = twoSampleExactP(dnm, n, m, gcd, strictInequality, alternative == AlternativeHypothesis.TWO_SIDED);
1054 }
1055 if (p < 0) {
1056 p = twoSampleApproximateP(d, n, m, alternative == AlternativeHypothesis.TWO_SIDED);
1057 }
1058 return p;
1059 }
1060
1061 /**
1062 * Computes \(P(D_{n,m} > d)\) if {@code strict} is {@code true}; otherwise \(P(D_{n,m} \ge
1063 * d)\), where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic, either the two-sided
1064 * \(D_{n,m}\) or one-sided \(D_{n,m}^+\}. See
1065 * {@link #statistic(double[], double[])} for the definition of \(D_{n,m}\).
1066 *
1067 * <p>The returned probability is exact. If the value cannot be computed this returns -1.
1068 *
1069 * <p>Note: This requires the greatest common divisor of n and m. The integral D statistic
1070 * in the range [0, n*m] is separated by increments of the gcd. The method will only
1071 * compute p-values for valid values of D by calculating for D/gcd.
1072 * Strict inquality is performed using the next valid value for D.
1073 *
1074 * @param dnm Integral D-statistic value (in [0, n*m]).
1075 * @param n First sample size.
1076 * @param m Second sample size.
1077 * @param gcd Greatest common divisor of n and m.
1078 * @param strict whether or not the probability to compute is expressed as a strict inequality.
1079 * @param twoSided whether D refers to D or D+.
1080 * @return probability that a randomly selected m-n partition of m + n generates D
1081 * greater than (resp. greater than or equal to) {@code d} (or -1)
1082 */
1083 static double twoSampleExactP(long dnm, int n, int m, int gcd, boolean strict, boolean twoSided) {
1084 // Create the statistic in [0, lcm]
1085 // For strict inequality D > d the result is the same if we compute for D >= (d+1)
1086 final long d = dnm / gcd + (strict ? 1 : 0);
1087
1088 // P-value methods compute for d <= lcm (least common multiple)
1089 final long lcm = (long) n * (m / gcd);
1090 if (d > lcm) {
1091 return 0;
1092 }
1093
1094 // Note: Some methods require m >= n, others n >= m
1095 final int a = Math.min(n, m);
1096 final int b = Math.max(n, m);
1097
1098 if (twoSided) {
1099 // Any two-sided statistic dnm cannot be less than min(n, m) in the absence of ties.
1100 if (d * gcd <= a) {
1101 return 1;
1102 }
1103 // Here d in [2, lcm]
1104 if (n == m) {
1105 return twoSampleTwoSidedPOutsideSquare(d, n);
1106 }
1107 return twoSampleTwoSidedPStabilizedInner(d, b, a, gcd);
1108 }
1109 // Any one-sided statistic cannot be less than 0
1110 if (d <= 0) {
1111 return 1;
1112 }
1113 // Here d in [1, lcm]
1114 if (n == m) {
1115 return twoSampleOneSidedPOutsideSquare(d, n);
1116 }
1117 return twoSampleOneSidedPOutside(d, a, b, gcd);
1118 }
1119
1120 /**
1121 * Computes \(P(D_{n,m} \ge d)\), where \(D_{n,m}\) is the 2-sample Kolmogorov-Smirnov statistic.
1122 *
1123 * <p>The returned probability is exact, implemented using the stabilized inner method
1124 * presented in Viehmann (2021).
1125 *
1126 * <p>This is optimized for {@code m <= n}. If {@code m > n} and index-out-of-bounds
1127 * exception can occur.
1128 *
1129 * @param d Integral D-statistic value (in [2, lcm])
1130 * @param n Larger sample size.
1131 * @param m Smaller sample size.
1132 * @param gcd Greatest common divisor of n and m.
1133 * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\)
1134 * greater than or equal to {@code d}
1135 */
1136 private static double twoSampleTwoSidedPStabilizedInner(long d, int n, int m, int gcd) {
1137 // Check the computation is possible.
1138 // Note that the possible paths is binom(m+n, n).
1139 // However the computation is stable above this limit.
1140 // Possible d values (requiring a unique p-value) = max(dnm) / gcd = lcm(n, m).
1141 // Possible terms to compute <= n * size(cij)
1142 // Simple limit based on the number of possible different p-values
1143 if ((long) n * (m / gcd) > MAX_LCM_TWO_SAMPLE_EXACT_P) {
1144 return -1;
1145 }
1146
1147 // This could be updated to use d in [1, lcm].
1148 // Currently it uses d in [gcd, n*m].
1149 // Largest intermediate value is (dnm + im + n) which is within 2^63
1150 // if n and m are 2^31-1, i = n, dnm = n*m: (2^31-1)^2 + (2^31-1)^2 + 2^31-1 < 2^63
1151 final long dnm = d * gcd;
1152
1153 // Viehmann (2021): Updated for i in [0, n], j in [0, m]
1154 // C_i,j = 1 if |i/n - j/m| >= d
1155 // = 0 if |i/n - j/m| < d and (i=0 or j=0)
1156 // = C_i-1,j * i/(i+j) + C_i,j-1 * j/(i+j) otherwise
1157 // P2 = C_n,m
1158 // Note: The python listing in Viehmann used d in [0, 1]. This uses dnm in [0, nm]
1159 // so updates the scaling to compute the ranges. Also note that the listing uses
1160 // dist > d or dist < -d where this uses |dist| >= d to compute P(D >= d) (non-strict inequality).
1161 // The provided listing is explicit in the values for each j in the range.
1162 // It can be optimized given the known start and end j for each iteration as only
1163 // j where |i/n - j/m| < d must be processed:
1164 // startJ where: im - jn < dnm : jn > im - dnm
1165 // j = floor((im - dnm) / n) + 1 in [0, m]
1166 // endJ where: jn - im >= dnm
1167 // j = ceil((dnm + im) / n) in [0, m+1]
1168
1169 // First iteration with i = 0
1170 // j = ceil(dnm / n)
1171 int endJ = Math.min(m + 1, (int) ((dnm + n - 1) / n));
1172
1173 // Only require 1 array to store C_i-1,j as the startJ only ever increases
1174 // and we update lower indices using higher ones.
1175 // The maximum value *written* is j=m or less using j/m <= 2*d : j = ceil(2*d*m)
1176 // Viehmann uses: size = int(2*m*d + 2) == ceil(2*d*m) + 1
1177 // The maximum value *read* is j/m <= 2*d. This may be above m. This occurs when
1178 // j - lastStartJ > m and C_i-1,j = 1. This can be avoided if (startJ - lastStartJ) <= 1
1179 // which occurs if m <= n, i.e. the window only slides 0 or 1 in j for each increment i
1180 // and we can maintain Cij as 1 larger than ceil(2*d*m) + 1.
1181 final double[] cij = new double[Math.min(m + 1, 2 * endJ + 2)];
1182
1183 // Each iteration fills C_i,j with values and the remaining values are
1184 // kept as 1 for |i/n - j/m| >= d
1185 //assert (endJ - 1) * (long) n < dnm : "jn >= dnm for j < endJ";
1186 for (int j = endJ; j < cij.length; j++) {
1187 //assert j * (long) n >= dnm : "jn < dnm for j >= endJ";
1188 cij[j] = 1;
1189 }
1190
1191 int startJ = 0;
1192 int length = endJ;
1193 double val = -1;
1194 long im = 0;
1195 for (int i = 1; i <= n; i++) {
1196 im += m;
1197 final int lastStartJ = startJ;
1198
1199 // Compute C_i,j for startJ <= j < endJ
1200 // startJ = floor((im - dnm) / n) + 1 in [0, m]
1201 // endJ = ceil((dnm + im) / n) in [0, m+1]
1202 startJ = im < dnm ? 0 : Math.min(m, (int) ((im - dnm) / n) + 1);
1203 endJ = Math.min(m + 1, (int) ((dnm + im + n - 1) / n));
1204
1205 if (startJ >= endJ) {
1206 // No possible paths inside the boundary
1207 return 1;
1208 }
1209
1210 //assert startJ - lastStartJ <= 1 : "startJ - lastStartJ > 1";
1211
1212 // Initialize previous value C_i,j-1
1213 val = startJ == 0 ? 0 : 1;
1214
1215 //assert startJ == 0 || Math.abs(im - (startJ - 1) * (long) n) >= dnm : "|im - jn| < dnm for j < startJ";
1216 //assert endJ > m || Math.abs(im - endJ * (long) n) >= dnm : "|im - jn| < dnm for j >= endJ";
1217 for (int j = startJ; j < endJ; j++) {
1218 //assert j == 0 || Math.abs(im - j * (long) n) < dnm : "|im - jn| >= dnm for startJ <= j < endJ";
1219 // C_i,j = C_i-1,j * i/(i+j) + C_i,j-1 * j/(i+j)
1220 // Note: if (j - lastStartJ) >= cij.length this creates an IOOB exception.
1221 // In this case cij[j - lastStartJ] == 1. Only happens when m >= n.
1222 // Fixed using c_i-1,j = (j - lastStartJ >= cij.length ? 1 : cij[j - lastStartJ]
1223 val = (cij[j - lastStartJ] * i + val * j) / ((double) i + j);
1224 cij[j - startJ] = val;
1225 }
1226
1227 // Must keep the remaining values in C_i,j as 1 to allow
1228 // cij[j - lastStartJ] * i == i when (j - lastStartJ) > lastLength
1229 final int lastLength = length;
1230 length = endJ - startJ;
1231 for (int j = lastLength - length - 1; j >= 0; j--) {
1232 cij[length + j] = 1;
1233 }
1234 }
1235 // Return the most recently written value: C_n,m
1236 return val;
1237 }
1238
1239 /**
1240 * Computes \(P(D_{n,m}^+ \ge d)\), where \(D_{n,m}^+\) is the 2-sample one-sided
1241 * Kolmogorov-Smirnov statistic.
1242 *
1243 * <p>The returned probability is exact, implemented using the outer method
1244 * presented in Hodges (1958).
1245 *
1246 * <p>This method will fail-fast and return -1 if the computation of the
1247 * numbers of paths overflows.
1248 *
1249 * @param d Integral D-statistic value (in [0, lcm])
1250 * @param n First sample size.
1251 * @param m Second sample size.
1252 * @param gcd Greatest common divisor of n and m.
1253 * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\)
1254 * greater than or equal to {@code d}
1255 */
1256 private static double twoSampleOneSidedPOutside(long d, int n, int m, int gcd) {
1257 // Hodges, Fig.2
1258 // Lower boundary: (nx - my)/nm >= d : (nx - my) >= dnm
1259 // B(x, y) is the number of ways from (0, 0) to (x, y) without previously
1260 // reaching the boundary.
1261 // B(x, y) = binom(x+y, y) - [number of ways which previously reached the boundary]
1262 // Total paths:
1263 // sum_y { B(x, y) binom(m+n-x-y, n-y) }
1264
1265 // Normalized by binom(m+n, n). Check this is possible.
1266 final long lm = m;
1267 if (n + lm > Integer.MAX_VALUE) {
1268 return -1;
1269 }
1270 final double binom = binom(m + n, n);
1271 if (binom == Double.POSITIVE_INFINITY) {
1272 return -1;
1273 }
1274
1275 // This could be updated to use d in [1, lcm].
1276 // Currently it uses d in [gcd, n*m].
1277 final long dnm = d * gcd;
1278
1279 // Visit all x in [0, m] where (nx - my) >= d for each increasing y in [0, n].
1280 // x = ceil( (d + my) / n ) = (d + my + n - 1) / n
1281 // y = ceil( (nx - d) / m ) = (nx - d + m - 1) / m
1282 // Note: n m integer, d in [0, nm], the intermediate cannot overflow a long.
1283 // x | y=0 = (d + n - 1) / n
1284 final int x0 = (int) ((dnm + n - 1) / n);
1285 if (x0 >= m) {
1286 return 1 / binom;
1287 }
1288 // The y above is the y *on* the boundary. Set the limit as the next y above:
1289 // y | x=m = 1 + floor( (nx - d) / m ) = 1 + (nm - d) / m
1290 final int maxy = (int) ((n * lm - dnm + m) / m);
1291 // Compute x and B(x, y) for visited B(x,y)
1292 final int[] xy = new int[maxy];
1293 final double[] bxy = new double[maxy];
1294 xy[0] = x0;
1295 bxy[0] = 1;
1296 for (int y = 1; y < maxy; y++) {
1297 final int x = (int) ((dnm + lm * y + n - 1) / n);
1298 // B(x, y) = binom(x+y, y) - [number of ways which previously reached the boundary]
1299 // Add the terms to subtract as a negative sum.
1300 final Sum b = Sum.create();
1301 for (int yy = 0; yy < y; yy++) {
1302 // Here: previousX = x - xy[yy] : previousY = y - yy
1303 // bxy[yy] is the paths to (previousX, previousY)
1304 // binom represent the paths from (previousX, previousY) to (x, y)
1305 b.addProduct(bxy[yy], -binom(x - xy[yy] + y - yy, y - yy));
1306 }
1307 b.add(binom(x + y, y));
1308 xy[y] = x;
1309 bxy[y] = b.getAsDouble();
1310 }
1311 // sum_y { B(x, y) binom(m+n-x-y, n-y) }
1312 final Sum sum = Sum.create();
1313 for (int y = 0; y < maxy; y++) {
1314 sum.addProduct(bxy[y], binom(m + n - xy[y] - y, n - y));
1315 }
1316 // No individual term should have overflowed since binom is finite.
1317 // Any sum above 1 is floating-point error.
1318 return KolmogorovSmirnovDistribution.clipProbability(sum.getAsDouble() / binom);
1319 }
1320
1321 /**
1322 * Computes \(P(D_{n,n}^+ \ge d)\), where \(D_{n,n}^+\) is the 2-sample one-sided
1323 * Kolmogorov-Smirnov statistic.
1324 *
1325 * <p>The returned probability is exact, implemented using the outer method
1326 * presented in Hodges (1958).
1327 *
1328 * @param d Integral D-statistic value (in [1, lcm])
1329 * @param n Sample size.
1330 * @return probability that a randomly selected m-n partition of m + n generates \(D_{n,m}\)
1331 * greater than or equal to {@code d}
1332 */
1333 private static double twoSampleOneSidedPOutsideSquare(long d, int n) {
1334 // Hodges (1958) Eq. 2.3:
1335 // p = binom(2n, n-a) / binom(2n, n)
1336 // a in [1, n] == d * n == dnm / n
1337 final int a = (int) d;
1338
1339 // Rearrange:
1340 // p = ( 2n! / ((n-a)! (n+a)!) ) / ( 2n! / (n! n!) )
1341 // = n! n! / ( (n-a)! (n+a)! )
1342 // Perform using pre-computed factorials if possible.
1343 if (n + a <= MAX_FACTORIAL) {
1344 final double x = Factorial.doubleValue(n);
1345 final double y = Factorial.doubleValue(n - a);
1346 final double z = Factorial.doubleValue(n + a);
1347 return (x / y) * (x / z);
1348 }
1349 // p = n! / (n-a)! * n! / (n+a)!
1350 // n * (n-1) * ... * (n-a+1)
1351 // = -----------------------------
1352 // (n+a) * (n+a-1) * ... * (n+1)
1353
1354 double p = 1;
1355 for (int i = 0; i < a && p != 0; i++) {
1356 p *= (n - i) / (1.0 + n + i);
1357 }
1358 return p;
1359 }
1360
1361 /**
1362 * Computes \(P(D_{n,n}^+ \ge d)\), where \(D_{n,n}^+\) is the 2-sample two-sided
1363 * Kolmogorov-Smirnov statistic.
1364 *
1365 * <p>The returned probability is exact, implemented using the outer method
1366 * presented in Hodges (1958).
1367 *
1368 * @param d Integral D-statistic value (in [1, n])
1369 * @param n Sample size.
1370 * @return probability that a randomly selected m-n partition of n + n generates \(D_{n,n}\)
1371 * greater than or equal to {@code d}
1372 */
1373 private static double twoSampleTwoSidedPOutsideSquare(long d, int n) {
1374 // Hodges (1958) Eq. 2.4:
1375 // p = 2 [ binom(2n, n-a) - binom(2n, n-2a) + binom(2n, n-3a) - ... ] / binom(2n, n)
1376 // a in [1, n] == d * n == dnm / n
1377
1378 // As per twoSampleOneSidedPOutsideSquare, divide by binom(2n, n) and each term
1379 // can be expressed as a product:
1380 // ( n - i n - i n - i )
1381 // p = 2 * ( prod_i=0^a --------- - prod_i=0^2a --------- + prod_i=0^3a --------- + ... )
1382 // ( 1 + n + i 1 + n + i 1 + n + i )
1383 // for ja in [1, ..., n/a]
1384 // Avoid repeat computation of terms by extracting common products:
1385 // p = 2 * ( p0a * (1 - p1a * (1 - p2a * (1 - ... ))) )
1386 // where each term pja is prod_i={ja}^{ja+a} for all j in [1, n / a]
1387
1388 // The first term is the one-sided p.
1389 final double p0a = twoSampleOneSidedPOutsideSquare(d, n);
1390 if (p0a == 0) {
1391 // Underflow - nothing more to do
1392 return 0;
1393 }
1394 // Compute the inner-terms from small to big.
1395 // j = n / (d/n) ~ n*n / d
1396 // j is a measure of how extreme the d value is (small j is extreme d).
1397 // When j is above 0 a path may traverse from the lower boundary to the upper boundary.
1398 final int a = (int) d;
1399 double p = 0;
1400 for (int j = n / a; j > 0; j--) {
1401 double pja = 1;
1402 final int jaa = j * a + a;
1403 // Since p0a did not underflow we avoid the check for pj != 0
1404 for (int i = j * a; i < jaa; i++) {
1405 pja *= (n - i) / (1.0 + n + i);
1406 }
1407 p = pja * (1 - p);
1408 }
1409 p = p0a * (1 - p);
1410 return Math.min(1, 2 * p);
1411 }
1412
1413 /**
1414 * Compute the binomial coefficient binom(n, k).
1415 *
1416 * @param n N.
1417 * @param k K.
1418 * @return binom(n, k)
1419 */
1420 private static double binom(int n, int k) {
1421 return BinomialCoefficientDouble.value(n, k);
1422 }
1423
1424 /**
1425 * Uses the Kolmogorov-Smirnov distribution to approximate \(P(D_{n,m} > d)\) where \(D_{n,m}\)
1426 * is the 2-sample Kolmogorov-Smirnov statistic. See
1427 * {@link #statistic(double[], double[])} for the definition of \(D_{n,m}\).
1428 *
1429 * <p>Specifically, what is returned is \(1 - CDF(d, \sqrt{mn / (m + n)})\) where CDF
1430 * is the cumulative density function of the two-sided one-sample Kolmogorov-Smirnov
1431 * distribution.
1432 *
1433 * @param d D-statistic value.
1434 * @param n First sample size.
1435 * @param m Second sample size.
1436 * @param twoSided True to compute the two-sided p-value; else one-sided.
1437 * @return approximate probability that a randomly selected m-n partition of m + n generates
1438 * \(D_{n,m}\) greater than {@code d}
1439 */
1440 static double twoSampleApproximateP(double d, int n, int m, boolean twoSided) {
1441 final double nn = Math.min(n, m);
1442 final double mm = Math.max(n, m);
1443 if (twoSided) {
1444 // Smirnov's asymptotic formula:
1445 // P(sqrt(N) D_n > x)
1446 // N = m*n/(m+n)
1447 return KolmogorovSmirnovDistribution.Two.sf(d, (int) Math.round(mm * nn / (mm + nn)));
1448 }
1449 // one-sided
1450 // Use Hodges Eq 5.3. Requires m >= n
1451 // Correct for m=n, m an integral multiple of n, and 'on the average' for m nearly equal to n
1452 final double z = d * Math.sqrt(nn * mm / (nn + mm));
1453 return Math.exp(-2 * z * z - 2 * z * (mm + 2 * nn) / Math.sqrt(mm * nn * (mm + nn)) / 3);
1454 }
1455
1456 /**
1457 * Verifies that {@code array} has length at least 2.
1458 *
1459 * @param array Array to test.
1460 * @return the length
1461 * @throws IllegalArgumentException if array is too short
1462 */
1463 private static int checkArrayLength(double[] array) {
1464 final int n = array.length;
1465 if (n <= 1) {
1466 throw new InferenceException(InferenceException.TWO_VALUES_REQUIRED, n);
1467 }
1468 return n;
1469 }
1470
1471 /**
1472 * Sort the input array. Throws an exception if NaN values are
1473 * present. It is assumed the array is non-zero length.
1474 *
1475 * @param x Input array.
1476 * @param name Name of the array.
1477 * @return a reference to the input (sorted) array
1478 * @throws IllegalArgumentException if {@code x} contains NaN values.
1479 */
1480 private static double[] sort(double[] x, String name) {
1481 Arrays.sort(x);
1482 // NaN will be at the end
1483 if (Double.isNaN(x[x.length - 1])) {
1484 throw new InferenceException(name + " contains NaN");
1485 }
1486 return x;
1487 }
1488 }