1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 package org.apache.commons.statistics.distribution;
18
19 import org.apache.commons.numbers.gamma.RegularizedBeta;
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 public final class BinomialDistribution extends AbstractDiscreteDistribution {
40
41 private static final float HALF = 0.5f;
42
43
44 private final int numberOfTrials;
45
46 private final double probabilityOfSuccess;
47
48 private final double pmf0;
49
50 private final double pmfn;
51
52
53
54
55
56 private BinomialDistribution(int trials,
57 double p) {
58 probabilityOfSuccess = p;
59 numberOfTrials = trials;
60
61
62
63
64 if (probabilityOfSuccess >= HALF) {
65 pmf0 = Math.pow(1 - probabilityOfSuccess, numberOfTrials);
66 } else {
67 pmf0 = Math.exp(numberOfTrials * Math.log1p(-probabilityOfSuccess));
68 }
69 pmfn = Math.pow(probabilityOfSuccess, numberOfTrials);
70 }
71
72
73
74
75
76
77
78
79
80
81 public static BinomialDistribution of(int trials,
82 double p) {
83 if (trials < 0) {
84 throw new DistributionException(DistributionException.NEGATIVE,
85 trials);
86 }
87 ArgumentUtils.checkProbability(p);
88
89 return new BinomialDistribution(trials, Math.abs(p));
90 }
91
92
93
94
95
96
97 public int getNumberOfTrials() {
98 return numberOfTrials;
99 }
100
101
102
103
104
105
106 public double getProbabilityOfSuccess() {
107 return probabilityOfSuccess;
108 }
109
110
111 @Override
112 public double probability(int x) {
113 if (x < 0 || x > numberOfTrials) {
114 return 0;
115 } else if (x == 0) {
116 return pmf0;
117 } else if (x == numberOfTrials) {
118 return pmfn;
119 }
120 return Math.exp(SaddlePointExpansionUtils.logBinomialProbability(x,
121 numberOfTrials, probabilityOfSuccess,
122 1.0 - probabilityOfSuccess));
123 }
124
125
126 @Override
127 public double logProbability(int x) {
128 if (numberOfTrials == 0) {
129 return (x == 0) ? 0.0 : Double.NEGATIVE_INFINITY;
130 } else if (x < 0 || x > numberOfTrials) {
131 return Double.NEGATIVE_INFINITY;
132 }
133
134
135 return SaddlePointExpansionUtils.logBinomialProbability(x,
136 numberOfTrials, probabilityOfSuccess,
137 1.0 - probabilityOfSuccess);
138 }
139
140
141 @Override
142 public double cumulativeProbability(int x) {
143 if (x < 0) {
144 return 0.0;
145 } else if (x >= numberOfTrials) {
146 return 1.0;
147 } else if (x == 0) {
148 return pmf0;
149 }
150 return RegularizedBeta.complement(probabilityOfSuccess,
151 x + 1.0, (double) numberOfTrials - x);
152 }
153
154
155 @Override
156 public double survivalProbability(int x) {
157 if (x < 0) {
158 return 1.0;
159 } else if (x >= numberOfTrials) {
160 return 0.0;
161 } else if (x == numberOfTrials - 1) {
162 return pmfn;
163 }
164 return RegularizedBeta.value(probabilityOfSuccess,
165 x + 1.0, (double) numberOfTrials - x);
166 }
167
168
169
170
171
172
173 @Override
174 public double getMean() {
175 return numberOfTrials * probabilityOfSuccess;
176 }
177
178
179
180
181
182
183 @Override
184 public double getVariance() {
185 final double p = probabilityOfSuccess;
186 return numberOfTrials * p * (1 - p);
187 }
188
189
190
191
192
193
194
195
196
197 @Override
198 public int getSupportLowerBound() {
199 return probabilityOfSuccess < 1.0 ? 0 : numberOfTrials;
200 }
201
202
203
204
205
206
207
208
209
210 @Override
211 public int getSupportUpperBound() {
212 return probabilityOfSuccess > 0.0 ? numberOfTrials : 0;
213 }
214
215
216 @Override
217 int getMedian() {
218
219
220
221
222 return (int) (numberOfTrials * probabilityOfSuccess);
223 }
224 }