View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      https://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.text.similarity;
19  
20  import java.util.Arrays;
21  
22  /**
23   * An algorithm for measuring the difference between two character sequences.
24   *
25   * <p>
26   * This is the number of changes needed to change one sequence into another, where each change is a single character modification (deletion, insertion or
27   * substitution).
28   * </p>
29   *
30   * @since 1.0
31   */
32  public class LevenshteinDetailedDistance implements EditDistance<LevenshteinResults> {
33  
34      /**
35       * The singleton instance.
36       */
37      private static final LevenshteinDetailedDistance INSTANCE = new LevenshteinDetailedDistance();
38  
39      /**
40       * Finds count for each of the three [insert, delete, substitute] operations needed. This is based on the matrix formed based on the two character sequence.
41       *
42       * @param <E>     The type of similarity score unit.
43       * @param left    character sequence which need to be converted from.
44       * @param right   character sequence which need to be converted to.
45       * @param matrix  two dimensional array containing.
46       * @param swapped tells whether the value for left character sequence and right character sequence were swapped to save memory.
47       * @return result object containing the count of insert, delete and substitute and total count needed.
48       */
49      private static <E> LevenshteinResults findDetailedResults(final SimilarityInput<E> left, final SimilarityInput<E> right, final int[][] matrix,
50              final boolean swapped) {
51          int delCount = 0;
52          int addCount = 0;
53          int subCount = 0;
54          int rowIndex = right.length();
55          int columnIndex = left.length();
56          int dataAtLeft = 0;
57          int dataAtTop = 0;
58          int dataAtDiagonal = 0;
59          int data = 0;
60          boolean deleted = false;
61          boolean added = false;
62          while (rowIndex >= 0 && columnIndex >= 0) {
63              if (columnIndex == 0) {
64                  dataAtLeft = -1;
65              } else {
66                  dataAtLeft = matrix[rowIndex][columnIndex - 1];
67              }
68              if (rowIndex == 0) {
69                  dataAtTop = -1;
70              } else {
71                  dataAtTop = matrix[rowIndex - 1][columnIndex];
72              }
73              if (rowIndex > 0 && columnIndex > 0) {
74                  dataAtDiagonal = matrix[rowIndex - 1][columnIndex - 1];
75              } else {
76                  dataAtDiagonal = -1;
77              }
78              if (dataAtLeft == -1 && dataAtTop == -1 && dataAtDiagonal == -1) {
79                  break;
80              }
81              data = matrix[rowIndex][columnIndex];
82              // case in which the character at left and right are the same,
83              // in this case none of the counters will be incremented.
84              if (columnIndex > 0 && rowIndex > 0 && left.at(columnIndex - 1).equals(right.at(rowIndex - 1))) {
85                  columnIndex--;
86                  rowIndex--;
87                  continue;
88              }
89              // handling insert and delete cases.
90              deleted = false;
91              added = false;
92              if (data - 1 == dataAtLeft && data <= dataAtDiagonal && data <= dataAtTop || dataAtDiagonal == -1 && dataAtTop == -1) { // NOPMD
93                  columnIndex--;
94                  if (swapped) {
95                      addCount++;
96                      added = true;
97                  } else {
98                      delCount++;
99                      deleted = true;
100                 }
101             } else if (data - 1 == dataAtTop && data <= dataAtDiagonal && data <= dataAtLeft || dataAtDiagonal == -1 && dataAtLeft == -1) { // NOPMD
102                 rowIndex--;
103                 if (swapped) {
104                     delCount++;
105                     deleted = true;
106                 } else {
107                     addCount++;
108                     added = true;
109                 }
110             }
111             // substituted case
112             if (!added && !deleted) {
113                 subCount++;
114                 columnIndex--;
115                 rowIndex--;
116             }
117         }
118         return new LevenshteinResults(addCount + delCount + subCount, addCount, delCount, subCount);
119     }
120 
121     /**
122      * Gets the default instance.
123      *
124      * @return The default instace
125      */
126     public static LevenshteinDetailedDistance getDefaultInstance() {
127         return INSTANCE;
128     }
129 
130     /**
131      * Finds the Levenshtein distance between two CharSequences if it's less than or equal to a given threshold.
132      *
133      * <p>
134      * This implementation follows from Algorithms on Strings, Trees and Sequences by Dan Gusfield and Chas Emerick's implementation of the Levenshtein distance
135      * algorithm from <a href="http://www.merriampark.com/ld.htm" >http://www.merriampark.com/ld.htm</a>
136      * </p>
137      *
138      * <pre>
139      * limitedCompare(null, *, *)             = IllegalArgumentException
140      * limitedCompare(*, null, *)             = IllegalArgumentException
141      * limitedCompare(*, *, -1)               = IllegalArgumentException
142      * limitedCompare("","", 0)               = 0
143      * limitedCompare("aaapppp", "", 8)       = 7
144      * limitedCompare("aaapppp", "", 7)       = 7
145      * limitedCompare("aaapppp", "", 6))      = -1
146      * limitedCompare("elephant", "hippo", 7) = 7
147      * limitedCompare("elephant", "hippo", 6) = -1
148      * limitedCompare("hippo", "elephant", 7) = 7
149      * limitedCompare("hippo", "elephant", 6) = -1
150      * </pre>
151      *
152      * @param <E>       The type of similarity score unit.
153      * @param left      the first CharSequence, must not be null.
154      * @param right     the second CharSequence, must not be null.
155      * @param threshold the target threshold, must not be negative.
156      * @return result distance, or -1.
157      */
158     private static <E> LevenshteinResults limitedCompare(SimilarityInput<E> left, SimilarityInput<E> right, final int threshold) { // NOPMD
159         if (left == null || right == null) {
160             throw new IllegalArgumentException("CharSequences must not be null");
161         }
162         if (threshold < 0) {
163             throw new IllegalArgumentException("Threshold must not be negative");
164         }
165         /*
166          * This implementation only computes the distance if it's less than or equal to the threshold value, returning -1 if it's greater. The advantage is
167          * performance: unbounded distance is O(nm), but a bound of k allows us to reduce it to O(km) time by only computing a diagonal stripe of width 2k + 1
168          * of the cost table. It is also possible to use this to compute the unbounded Levenshtein distance by starting the threshold at 1 and doubling each
169          * time until the distance is found; this is O(dm), where d is the distance.
170          *
171          * One subtlety comes from needing to ignore entries on the border of our stripe eg. p[] = |#|#|#|* d[] = *|#|#|#| We must ignore the entry to the left
172          * of the leftmost member We must ignore the entry above the rightmost member
173          *
174          * Another subtlety comes from our stripe running off the matrix if the strings aren't of the same size. Since string s is always swapped to be the
175          * shorter of the two, the stripe will always run off to the upper right instead of the lower left of the matrix.
176          *
177          * As a concrete example, suppose s is of length 5, t is of length 7, and our threshold is 1. In this case we're going to walk a stripe of length 3. The
178          * matrix would look like so:
179          *
180          * <pre> 1 2 3 4 5 1 |#|#| | | | 2 |#|#|#| | | 3 | |#|#|#| | 4 | | |#|#|#| 5 | | | |#|#| 6 | | | | |#| 7 | | | | | | </pre>
181          *
182          * Note how the stripe leads off the table as there is no possible way to turn a string of length 5 into one of length 7 in edit distance of 1.
183          *
184          * Additionally, this implementation decreases memory usage by using two single-dimensional arrays and swapping them back and forth instead of
185          * allocating an entire n by m matrix. This requires a few minor changes, such as immediately returning when it's detected that the stripe has run off
186          * the matrix and initially filling the arrays with large values so that entries we don't compute are ignored.
187          *
188          * See Algorithms on Strings, Trees and Sequences by Dan Gusfield for some discussion.
189          */
190         int n = left.length(); // length of left
191         int m = right.length(); // length of right
192         // if one string is empty, the edit distance is necessarily the length of the other
193         if (n == 0) {
194             return m <= threshold ? new LevenshteinResults(m, m, 0, 0) : new LevenshteinResults(-1, 0, 0, 0);
195         }
196         if (m == 0) {
197             return n <= threshold ? new LevenshteinResults(n, 0, n, 0) : new LevenshteinResults(-1, 0, 0, 0);
198         }
199         boolean swapped = false;
200         if (n > m) {
201             // swap the two strings to consume less memory
202             final SimilarityInput<E> tmp = left;
203             left = right;
204             right = tmp;
205             n = m;
206             m = right.length();
207             swapped = true;
208         }
209         int[] p = new int[n + 1]; // 'previous' cost array, horizontally
210         int[] d = new int[n + 1]; // cost array, horizontally
211         int[] tempD; // placeholder to assist in swapping p and d
212         final int[][] matrix = new int[m + 1][n + 1];
213         // filling the first row and first column values in the matrix
214         for (int index = 0; index <= n; index++) {
215             matrix[0][index] = index;
216         }
217         for (int index = 0; index <= m; index++) {
218             matrix[index][0] = index;
219         }
220         // fill in starting table values
221         final int boundary = Math.min(n, threshold) + 1;
222         for (int i = 0; i < boundary; i++) {
223             p[i] = i;
224         }
225         // these fills ensure that the value above the rightmost entry of our
226         // stripe will be ignored in following loop iterations
227         Arrays.fill(p, boundary, p.length, Integer.MAX_VALUE);
228         Arrays.fill(d, Integer.MAX_VALUE);
229         // iterates through t
230         for (int j = 1; j <= m; j++) {
231             final E rightJ = right.at(j - 1); // jth character of right
232             d[0] = j;
233             // compute stripe indices, constrain to array size
234             final int min = Math.max(1, j - threshold);
235             final int max = j > Integer.MAX_VALUE - threshold ? n : Math.min(n, j + threshold);
236             // the stripe may lead off of the table if s and t are of different sizes
237             if (min > max) {
238                 return new LevenshteinResults(-1, 0, 0, 0);
239             }
240             // ignore entry left of leftmost
241             if (min > 1) {
242                 d[min - 1] = Integer.MAX_VALUE;
243             }
244             // iterates through [min, max] in s
245             for (int i = min; i <= max; i++) {
246                 if (left.at(i - 1).equals(rightJ)) {
247                     // diagonally left and up
248                     d[i] = p[i - 1];
249                 } else {
250                     // 1 + minimum of cell to the left, to the top, diagonally left and up
251                     d[i] = 1 + Math.min(Math.min(d[i - 1], p[i]), p[i - 1]);
252                 }
253                 matrix[j][i] = d[i];
254             }
255             // copy current distance counts to 'previous row' distance counts
256             tempD = p;
257             p = d;
258             d = tempD;
259         }
260         // if p[n] is greater than the threshold, there's no guarantee on it being the correct distance
261         if (p[n] <= threshold) {
262             return findDetailedResults(left, right, matrix, swapped);
263         }
264         return new LevenshteinResults(-1, 0, 0, 0);
265     }
266 
267     /**
268      * Finds the Levenshtein distance between two Strings.
269      *
270      * <p>
271      * A higher score indicates a greater distance.
272      * </p>
273      *
274      * <p>
275      * The previous implementation of the Levenshtein distance algorithm was from
276      * <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a>
277      * </p>
278      *
279      * <p>
280      * Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large
281      * strings.<br>
282      * This implementation of the Levenshtein distance algorithm is from
283      * <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a>
284      * </p>
285      *
286      * <pre>
287      * unlimitedCompare(null, *)             = IllegalArgumentException
288      * unlimitedCompare(*, null)             = IllegalArgumentException
289      * unlimitedCompare("","")               = 0
290      * unlimitedCompare("","a")              = 1
291      * unlimitedCompare("aaapppp", "")       = 7
292      * unlimitedCompare("frog", "fog")       = 1
293      * unlimitedCompare("fly", "ant")        = 3
294      * unlimitedCompare("elephant", "hippo") = 7
295      * unlimitedCompare("hippo", "elephant") = 7
296      * unlimitedCompare("hippo", "zzzzzzzz") = 8
297      * unlimitedCompare("hello", "hallo")    = 1
298      * </pre>
299      *
300      * @param <E>   The type of similarity score unit.
301      * @param left  the first CharSequence, must not be null.
302      * @param right the second CharSequence, must not be null.
303      * @return result distance, or -1.
304      * @throws IllegalArgumentException if either CharSequence input is {@code null}.
305      */
306     private static <E> LevenshteinResults unlimitedCompare(SimilarityInput<E> left, SimilarityInput<E> right) {
307         if (left == null || right == null) {
308             throw new IllegalArgumentException("CharSequences must not be null");
309         }
310         /*
311          * The difference between this impl. and the previous is that, rather than creating and retaining a matrix of size s.length() + 1 by t.length() + 1, we
312          * maintain two single-dimensional arrays of length s.length() + 1. The first, d, is the 'current working' distance array that maintains the newest
313          * distance cost counts as we iterate through the characters of String s. Each time we increment the index of String t we are comparing, d is copied to
314          * p, the second int[]. Doing so allows us to retain the previous cost counts as required by the algorithm (taking the minimum of the cost count to the
315          * left, up one, and diagonally up and to the left of the current cost count being calculated). (Note that the arrays aren't really copied anymore, just
316          * switched...this is clearly much better than cloning an array or doing a System.arraycopy() each time through the outer loop.)
317          *
318          * Effectively, the difference between the two implementations is this one does not cause an out of memory condition when calculating the LD over two
319          * very large strings.
320          */
321         int n = left.length(); // length of left
322         int m = right.length(); // length of right
323         if (n == 0) {
324             return new LevenshteinResults(m, m, 0, 0);
325         }
326         if (m == 0) {
327             return new LevenshteinResults(n, 0, n, 0);
328         }
329         boolean swapped = false;
330         if (n > m) {
331             // swap the input strings to consume less memory
332             final SimilarityInput<E> tmp = left;
333             left = right;
334             right = tmp;
335             n = m;
336             m = right.length();
337             swapped = true;
338         }
339         int[] p = new int[n + 1]; // 'previous' cost array, horizontally
340         int[] d = new int[n + 1]; // cost array, horizontally
341         int[] tempD; // placeholder to assist in swapping p and d
342         final int[][] matrix = new int[m + 1][n + 1];
343         // filling the first row and first column values in the matrix
344         for (int index = 0; index <= n; index++) {
345             matrix[0][index] = index;
346         }
347         for (int index = 0; index <= m; index++) {
348             matrix[index][0] = index;
349         }
350         // indexes into strings left and right
351         int i; // iterates through left
352         int j; // iterates through right
353         E rightJ; // jth character of right
354         int cost; // cost
355         for (i = 0; i <= n; i++) {
356             p[i] = i;
357         }
358         for (j = 1; j <= m; j++) {
359             rightJ = right.at(j - 1);
360             d[0] = j;
361             for (i = 1; i <= n; i++) {
362                 cost = left.at(i - 1).equals(rightJ) ? 0 : 1;
363                 // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
364                 d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + cost);
365                 // filling the matrix
366                 matrix[j][i] = d[i];
367             }
368             // copy current distance counts to 'previous row' distance counts
369             tempD = p;
370             p = d;
371             d = tempD;
372         }
373         return findDetailedResults(left, right, matrix, swapped);
374     }
375 
376     /**
377      * Threshold.
378      */
379     private final Integer threshold;
380 
381     /**
382      * <p>
383      * This returns the default instance that uses a version of the algorithm that does not use a threshold parameter.
384      * </p>
385      *
386      * @see LevenshteinDetailedDistance#getDefaultInstance()
387      * @deprecated Use {@link #getDefaultInstance()}.
388      */
389     @Deprecated
390     public LevenshteinDetailedDistance() {
391         this(null);
392     }
393 
394     /**
395      * If the threshold is not null, distance calculations will be limited to a maximum length.
396      *
397      * <p>
398      * If the threshold is null, the unlimited version of the algorithm will be used.
399      * </p>
400      *
401      * @param threshold If this is null then distances calculations will not be limited. This may not be negative.
402      */
403     public LevenshteinDetailedDistance(final Integer threshold) {
404         if (threshold != null && threshold < 0) {
405             throw new IllegalArgumentException("Threshold must not be negative");
406         }
407         this.threshold = threshold;
408     }
409 
410     /**
411      * Computes the Levenshtein distance between two Strings.
412      *
413      * <p>
414      * A higher score indicates a greater distance.
415      * </p>
416      *
417      * <p>
418      * The previous implementation of the Levenshtein distance algorithm was from
419      * <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a>
420      * </p>
421      *
422      * <p>
423      * Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large
424      * strings.<br>
425      * This implementation of the Levenshtein distance algorithm is from
426      * <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a>
427      * </p>
428      *
429      * <pre>
430      * distance.apply(null, *)             = IllegalArgumentException
431      * distance.apply(*, null)             = IllegalArgumentException
432      * distance.apply("","")               = 0
433      * distance.apply("","a")              = 1
434      * distance.apply("aaapppp", "")       = 7
435      * distance.apply("frog", "fog")       = 1
436      * distance.apply("fly", "ant")        = 3
437      * distance.apply("elephant", "hippo") = 7
438      * distance.apply("hippo", "elephant") = 7
439      * distance.apply("hippo", "zzzzzzzz") = 8
440      * distance.apply("hello", "hallo")    = 1
441      * </pre>
442      *
443      * @param left  the first input, must not be null.
444      * @param right the second input, must not be null.
445      * @return result distance, or -1.
446      * @throws IllegalArgumentException if either String input {@code null}.
447      */
448     @Override
449     public LevenshteinResults apply(final CharSequence left, final CharSequence right) {
450         return apply(SimilarityInput.input(left), SimilarityInput.input(right));
451     }
452 
453     /**
454      * Computes the Levenshtein distance between two Strings.
455      *
456      * <p>
457      * A higher score indicates a greater distance.
458      * </p>
459      *
460      * <p>
461      * The previous implementation of the Levenshtein distance algorithm was from
462      * <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a>
463      * </p>
464      *
465      * <p>
466      * Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large
467      * strings.<br>
468      * This implementation of the Levenshtein distance algorithm is from
469      * <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a>
470      * </p>
471      *
472      * <pre>
473      * distance.apply(null, *)             = IllegalArgumentException
474      * distance.apply(*, null)             = IllegalArgumentException
475      * distance.apply("","")               = 0
476      * distance.apply("","a")              = 1
477      * distance.apply("aaapppp", "")       = 7
478      * distance.apply("frog", "fog")       = 1
479      * distance.apply("fly", "ant")        = 3
480      * distance.apply("elephant", "hippo") = 7
481      * distance.apply("hippo", "elephant") = 7
482      * distance.apply("hippo", "zzzzzzzz") = 8
483      * distance.apply("hello", "hallo")    = 1
484      * </pre>
485      *
486      * @param <E>   The type of similarity score unit.
487      * @param left  the first input, must not be null.
488      * @param right the second input, must not be null.
489      * @return result distance, or -1.
490      * @throws IllegalArgumentException if either String input {@code null}.
491      * @since 1.13.0
492      */
493     public <E> LevenshteinResults apply(final SimilarityInput<E> left, final SimilarityInput<E> right) {
494         if (threshold != null) {
495             return limitedCompare(left, right, threshold);
496         }
497         return unlimitedCompare(left, right);
498     }
499 
500     /**
501      * Gets the distance threshold.
502      *
503      * @return The distance threshold.
504      */
505     public Integer getThreshold() {
506         return threshold;
507     }
508 }