1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * https://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 18 package org.apache.commons.text.similarity; 19 20 import java.util.Arrays; 21 22 /** 23 * An algorithm for measuring the difference between two character sequences. 24 * 25 * <p> 26 * This is the number of changes needed to change one sequence into another, where each change is a single character modification (deletion, insertion or 27 * substitution). 28 * </p> 29 * 30 * @since 1.0 31 */ 32 public class LevenshteinDetailedDistance implements EditDistance<LevenshteinResults> { 33 34 /** 35 * The singleton instance. 36 */ 37 private static final LevenshteinDetailedDistance INSTANCE = new LevenshteinDetailedDistance(); 38 39 /** 40 * Finds count for each of the three [insert, delete, substitute] operations needed. This is based on the matrix formed based on the two character sequence. 41 * 42 * @param <E> The type of similarity score unit. 43 * @param left character sequence which need to be converted from. 44 * @param right character sequence which need to be converted to. 45 * @param matrix two dimensional array containing. 46 * @param swapped tells whether the value for left character sequence and right character sequence were swapped to save memory. 47 * @return result object containing the count of insert, delete and substitute and total count needed. 48 */ 49 private static <E> LevenshteinResults findDetailedResults(final SimilarityInput<E> left, final SimilarityInput<E> right, final int[][] matrix, 50 final boolean swapped) { 51 int delCount = 0; 52 int addCount = 0; 53 int subCount = 0; 54 int rowIndex = right.length(); 55 int columnIndex = left.length(); 56 int dataAtLeft = 0; 57 int dataAtTop = 0; 58 int dataAtDiagonal = 0; 59 int data = 0; 60 boolean deleted = false; 61 boolean added = false; 62 while (rowIndex >= 0 && columnIndex >= 0) { 63 if (columnIndex == 0) { 64 dataAtLeft = -1; 65 } else { 66 dataAtLeft = matrix[rowIndex][columnIndex - 1]; 67 } 68 if (rowIndex == 0) { 69 dataAtTop = -1; 70 } else { 71 dataAtTop = matrix[rowIndex - 1][columnIndex]; 72 } 73 if (rowIndex > 0 && columnIndex > 0) { 74 dataAtDiagonal = matrix[rowIndex - 1][columnIndex - 1]; 75 } else { 76 dataAtDiagonal = -1; 77 } 78 if (dataAtLeft == -1 && dataAtTop == -1 && dataAtDiagonal == -1) { 79 break; 80 } 81 data = matrix[rowIndex][columnIndex]; 82 // case in which the character at left and right are the same, 83 // in this case none of the counters will be incremented. 84 if (columnIndex > 0 && rowIndex > 0 && left.at(columnIndex - 1).equals(right.at(rowIndex - 1))) { 85 columnIndex--; 86 rowIndex--; 87 continue; 88 } 89 // handling insert and delete cases. 90 deleted = false; 91 added = false; 92 if (data - 1 == dataAtLeft && data <= dataAtDiagonal && data <= dataAtTop || dataAtDiagonal == -1 && dataAtTop == -1) { // NOPMD 93 columnIndex--; 94 if (swapped) { 95 addCount++; 96 added = true; 97 } else { 98 delCount++; 99 deleted = true; 100 } 101 } else if (data - 1 == dataAtTop && data <= dataAtDiagonal && data <= dataAtLeft || dataAtDiagonal == -1 && dataAtLeft == -1) { // NOPMD 102 rowIndex--; 103 if (swapped) { 104 delCount++; 105 deleted = true; 106 } else { 107 addCount++; 108 added = true; 109 } 110 } 111 // substituted case 112 if (!added && !deleted) { 113 subCount++; 114 columnIndex--; 115 rowIndex--; 116 } 117 } 118 return new LevenshteinResults(addCount + delCount + subCount, addCount, delCount, subCount); 119 } 120 121 /** 122 * Gets the default instance. 123 * 124 * @return The default instace 125 */ 126 public static LevenshteinDetailedDistance getDefaultInstance() { 127 return INSTANCE; 128 } 129 130 /** 131 * Finds the Levenshtein distance between two CharSequences if it's less than or equal to a given threshold. 132 * 133 * <p> 134 * This implementation follows from Algorithms on Strings, Trees and Sequences by Dan Gusfield and Chas Emerick's implementation of the Levenshtein distance 135 * algorithm from <a href="http://www.merriampark.com/ld.htm" >http://www.merriampark.com/ld.htm</a> 136 * </p> 137 * 138 * <pre> 139 * limitedCompare(null, *, *) = IllegalArgumentException 140 * limitedCompare(*, null, *) = IllegalArgumentException 141 * limitedCompare(*, *, -1) = IllegalArgumentException 142 * limitedCompare("","", 0) = 0 143 * limitedCompare("aaapppp", "", 8) = 7 144 * limitedCompare("aaapppp", "", 7) = 7 145 * limitedCompare("aaapppp", "", 6)) = -1 146 * limitedCompare("elephant", "hippo", 7) = 7 147 * limitedCompare("elephant", "hippo", 6) = -1 148 * limitedCompare("hippo", "elephant", 7) = 7 149 * limitedCompare("hippo", "elephant", 6) = -1 150 * </pre> 151 * 152 * @param <E> The type of similarity score unit. 153 * @param left the first CharSequence, must not be null. 154 * @param right the second CharSequence, must not be null. 155 * @param threshold the target threshold, must not be negative. 156 * @return result distance, or -1. 157 */ 158 private static <E> LevenshteinResults limitedCompare(SimilarityInput<E> left, SimilarityInput<E> right, final int threshold) { // NOPMD 159 if (left == null || right == null) { 160 throw new IllegalArgumentException("CharSequences must not be null"); 161 } 162 if (threshold < 0) { 163 throw new IllegalArgumentException("Threshold must not be negative"); 164 } 165 /* 166 * This implementation only computes the distance if it's less than or equal to the threshold value, returning -1 if it's greater. The advantage is 167 * performance: unbounded distance is O(nm), but a bound of k allows us to reduce it to O(km) time by only computing a diagonal stripe of width 2k + 1 168 * of the cost table. It is also possible to use this to compute the unbounded Levenshtein distance by starting the threshold at 1 and doubling each 169 * time until the distance is found; this is O(dm), where d is the distance. 170 * 171 * One subtlety comes from needing to ignore entries on the border of our stripe eg. p[] = |#|#|#|* d[] = *|#|#|#| We must ignore the entry to the left 172 * of the leftmost member We must ignore the entry above the rightmost member 173 * 174 * Another subtlety comes from our stripe running off the matrix if the strings aren't of the same size. Since string s is always swapped to be the 175 * shorter of the two, the stripe will always run off to the upper right instead of the lower left of the matrix. 176 * 177 * As a concrete example, suppose s is of length 5, t is of length 7, and our threshold is 1. In this case we're going to walk a stripe of length 3. The 178 * matrix would look like so: 179 * 180 * <pre> 1 2 3 4 5 1 |#|#| | | | 2 |#|#|#| | | 3 | |#|#|#| | 4 | | |#|#|#| 5 | | | |#|#| 6 | | | | |#| 7 | | | | | | </pre> 181 * 182 * Note how the stripe leads off the table as there is no possible way to turn a string of length 5 into one of length 7 in edit distance of 1. 183 * 184 * Additionally, this implementation decreases memory usage by using two single-dimensional arrays and swapping them back and forth instead of 185 * allocating an entire n by m matrix. This requires a few minor changes, such as immediately returning when it's detected that the stripe has run off 186 * the matrix and initially filling the arrays with large values so that entries we don't compute are ignored. 187 * 188 * See Algorithms on Strings, Trees and Sequences by Dan Gusfield for some discussion. 189 */ 190 int n = left.length(); // length of left 191 int m = right.length(); // length of right 192 // if one string is empty, the edit distance is necessarily the length of the other 193 if (n == 0) { 194 return m <= threshold ? new LevenshteinResults(m, m, 0, 0) : new LevenshteinResults(-1, 0, 0, 0); 195 } 196 if (m == 0) { 197 return n <= threshold ? new LevenshteinResults(n, 0, n, 0) : new LevenshteinResults(-1, 0, 0, 0); 198 } 199 boolean swapped = false; 200 if (n > m) { 201 // swap the two strings to consume less memory 202 final SimilarityInput<E> tmp = left; 203 left = right; 204 right = tmp; 205 n = m; 206 m = right.length(); 207 swapped = true; 208 } 209 int[] p = new int[n + 1]; // 'previous' cost array, horizontally 210 int[] d = new int[n + 1]; // cost array, horizontally 211 int[] tempD; // placeholder to assist in swapping p and d 212 final int[][] matrix = new int[m + 1][n + 1]; 213 // filling the first row and first column values in the matrix 214 for (int index = 0; index <= n; index++) { 215 matrix[0][index] = index; 216 } 217 for (int index = 0; index <= m; index++) { 218 matrix[index][0] = index; 219 } 220 // fill in starting table values 221 final int boundary = Math.min(n, threshold) + 1; 222 for (int i = 0; i < boundary; i++) { 223 p[i] = i; 224 } 225 // these fills ensure that the value above the rightmost entry of our 226 // stripe will be ignored in following loop iterations 227 Arrays.fill(p, boundary, p.length, Integer.MAX_VALUE); 228 Arrays.fill(d, Integer.MAX_VALUE); 229 // iterates through t 230 for (int j = 1; j <= m; j++) { 231 final E rightJ = right.at(j - 1); // jth character of right 232 d[0] = j; 233 // compute stripe indices, constrain to array size 234 final int min = Math.max(1, j - threshold); 235 final int max = j > Integer.MAX_VALUE - threshold ? n : Math.min(n, j + threshold); 236 // the stripe may lead off of the table if s and t are of different sizes 237 if (min > max) { 238 return new LevenshteinResults(-1, 0, 0, 0); 239 } 240 // ignore entry left of leftmost 241 if (min > 1) { 242 d[min - 1] = Integer.MAX_VALUE; 243 } 244 // iterates through [min, max] in s 245 for (int i = min; i <= max; i++) { 246 if (left.at(i - 1).equals(rightJ)) { 247 // diagonally left and up 248 d[i] = p[i - 1]; 249 } else { 250 // 1 + minimum of cell to the left, to the top, diagonally left and up 251 d[i] = 1 + Math.min(Math.min(d[i - 1], p[i]), p[i - 1]); 252 } 253 matrix[j][i] = d[i]; 254 } 255 // copy current distance counts to 'previous row' distance counts 256 tempD = p; 257 p = d; 258 d = tempD; 259 } 260 // if p[n] is greater than the threshold, there's no guarantee on it being the correct distance 261 if (p[n] <= threshold) { 262 return findDetailedResults(left, right, matrix, swapped); 263 } 264 return new LevenshteinResults(-1, 0, 0, 0); 265 } 266 267 /** 268 * Finds the Levenshtein distance between two Strings. 269 * 270 * <p> 271 * A higher score indicates a greater distance. 272 * </p> 273 * 274 * <p> 275 * The previous implementation of the Levenshtein distance algorithm was from 276 * <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a> 277 * </p> 278 * 279 * <p> 280 * Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large 281 * strings.<br> 282 * This implementation of the Levenshtein distance algorithm is from 283 * <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a> 284 * </p> 285 * 286 * <pre> 287 * unlimitedCompare(null, *) = IllegalArgumentException 288 * unlimitedCompare(*, null) = IllegalArgumentException 289 * unlimitedCompare("","") = 0 290 * unlimitedCompare("","a") = 1 291 * unlimitedCompare("aaapppp", "") = 7 292 * unlimitedCompare("frog", "fog") = 1 293 * unlimitedCompare("fly", "ant") = 3 294 * unlimitedCompare("elephant", "hippo") = 7 295 * unlimitedCompare("hippo", "elephant") = 7 296 * unlimitedCompare("hippo", "zzzzzzzz") = 8 297 * unlimitedCompare("hello", "hallo") = 1 298 * </pre> 299 * 300 * @param <E> The type of similarity score unit. 301 * @param left the first CharSequence, must not be null. 302 * @param right the second CharSequence, must not be null. 303 * @return result distance, or -1. 304 * @throws IllegalArgumentException if either CharSequence input is {@code null}. 305 */ 306 private static <E> LevenshteinResults unlimitedCompare(SimilarityInput<E> left, SimilarityInput<E> right) { 307 if (left == null || right == null) { 308 throw new IllegalArgumentException("CharSequences must not be null"); 309 } 310 /* 311 * The difference between this impl. and the previous is that, rather than creating and retaining a matrix of size s.length() + 1 by t.length() + 1, we 312 * maintain two single-dimensional arrays of length s.length() + 1. The first, d, is the 'current working' distance array that maintains the newest 313 * distance cost counts as we iterate through the characters of String s. Each time we increment the index of String t we are comparing, d is copied to 314 * p, the second int[]. Doing so allows us to retain the previous cost counts as required by the algorithm (taking the minimum of the cost count to the 315 * left, up one, and diagonally up and to the left of the current cost count being calculated). (Note that the arrays aren't really copied anymore, just 316 * switched...this is clearly much better than cloning an array or doing a System.arraycopy() each time through the outer loop.) 317 * 318 * Effectively, the difference between the two implementations is this one does not cause an out of memory condition when calculating the LD over two 319 * very large strings. 320 */ 321 int n = left.length(); // length of left 322 int m = right.length(); // length of right 323 if (n == 0) { 324 return new LevenshteinResults(m, m, 0, 0); 325 } 326 if (m == 0) { 327 return new LevenshteinResults(n, 0, n, 0); 328 } 329 boolean swapped = false; 330 if (n > m) { 331 // swap the input strings to consume less memory 332 final SimilarityInput<E> tmp = left; 333 left = right; 334 right = tmp; 335 n = m; 336 m = right.length(); 337 swapped = true; 338 } 339 int[] p = new int[n + 1]; // 'previous' cost array, horizontally 340 int[] d = new int[n + 1]; // cost array, horizontally 341 int[] tempD; // placeholder to assist in swapping p and d 342 final int[][] matrix = new int[m + 1][n + 1]; 343 // filling the first row and first column values in the matrix 344 for (int index = 0; index <= n; index++) { 345 matrix[0][index] = index; 346 } 347 for (int index = 0; index <= m; index++) { 348 matrix[index][0] = index; 349 } 350 // indexes into strings left and right 351 int i; // iterates through left 352 int j; // iterates through right 353 E rightJ; // jth character of right 354 int cost; // cost 355 for (i = 0; i <= n; i++) { 356 p[i] = i; 357 } 358 for (j = 1; j <= m; j++) { 359 rightJ = right.at(j - 1); 360 d[0] = j; 361 for (i = 1; i <= n; i++) { 362 cost = left.at(i - 1).equals(rightJ) ? 0 : 1; 363 // minimum of cell to the left+1, to the top+1, diagonally left and up +cost 364 d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + cost); 365 // filling the matrix 366 matrix[j][i] = d[i]; 367 } 368 // copy current distance counts to 'previous row' distance counts 369 tempD = p; 370 p = d; 371 d = tempD; 372 } 373 return findDetailedResults(left, right, matrix, swapped); 374 } 375 376 /** 377 * Threshold. 378 */ 379 private final Integer threshold; 380 381 /** 382 * <p> 383 * This returns the default instance that uses a version of the algorithm that does not use a threshold parameter. 384 * </p> 385 * 386 * @see LevenshteinDetailedDistance#getDefaultInstance() 387 * @deprecated Use {@link #getDefaultInstance()}. 388 */ 389 @Deprecated 390 public LevenshteinDetailedDistance() { 391 this(null); 392 } 393 394 /** 395 * If the threshold is not null, distance calculations will be limited to a maximum length. 396 * 397 * <p> 398 * If the threshold is null, the unlimited version of the algorithm will be used. 399 * </p> 400 * 401 * @param threshold If this is null then distances calculations will not be limited. This may not be negative. 402 */ 403 public LevenshteinDetailedDistance(final Integer threshold) { 404 if (threshold != null && threshold < 0) { 405 throw new IllegalArgumentException("Threshold must not be negative"); 406 } 407 this.threshold = threshold; 408 } 409 410 /** 411 * Computes the Levenshtein distance between two Strings. 412 * 413 * <p> 414 * A higher score indicates a greater distance. 415 * </p> 416 * 417 * <p> 418 * The previous implementation of the Levenshtein distance algorithm was from 419 * <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a> 420 * </p> 421 * 422 * <p> 423 * Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large 424 * strings.<br> 425 * This implementation of the Levenshtein distance algorithm is from 426 * <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a> 427 * </p> 428 * 429 * <pre> 430 * distance.apply(null, *) = IllegalArgumentException 431 * distance.apply(*, null) = IllegalArgumentException 432 * distance.apply("","") = 0 433 * distance.apply("","a") = 1 434 * distance.apply("aaapppp", "") = 7 435 * distance.apply("frog", "fog") = 1 436 * distance.apply("fly", "ant") = 3 437 * distance.apply("elephant", "hippo") = 7 438 * distance.apply("hippo", "elephant") = 7 439 * distance.apply("hippo", "zzzzzzzz") = 8 440 * distance.apply("hello", "hallo") = 1 441 * </pre> 442 * 443 * @param left the first input, must not be null. 444 * @param right the second input, must not be null. 445 * @return result distance, or -1. 446 * @throws IllegalArgumentException if either String input {@code null}. 447 */ 448 @Override 449 public LevenshteinResults apply(final CharSequence left, final CharSequence right) { 450 return apply(SimilarityInput.input(left), SimilarityInput.input(right)); 451 } 452 453 /** 454 * Computes the Levenshtein distance between two Strings. 455 * 456 * <p> 457 * A higher score indicates a greater distance. 458 * </p> 459 * 460 * <p> 461 * The previous implementation of the Levenshtein distance algorithm was from 462 * <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a> 463 * </p> 464 * 465 * <p> 466 * Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large 467 * strings.<br> 468 * This implementation of the Levenshtein distance algorithm is from 469 * <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a> 470 * </p> 471 * 472 * <pre> 473 * distance.apply(null, *) = IllegalArgumentException 474 * distance.apply(*, null) = IllegalArgumentException 475 * distance.apply("","") = 0 476 * distance.apply("","a") = 1 477 * distance.apply("aaapppp", "") = 7 478 * distance.apply("frog", "fog") = 1 479 * distance.apply("fly", "ant") = 3 480 * distance.apply("elephant", "hippo") = 7 481 * distance.apply("hippo", "elephant") = 7 482 * distance.apply("hippo", "zzzzzzzz") = 8 483 * distance.apply("hello", "hallo") = 1 484 * </pre> 485 * 486 * @param <E> The type of similarity score unit. 487 * @param left the first input, must not be null. 488 * @param right the second input, must not be null. 489 * @return result distance, or -1. 490 * @throws IllegalArgumentException if either String input {@code null}. 491 * @since 1.13.0 492 */ 493 public <E> LevenshteinResults apply(final SimilarityInput<E> left, final SimilarityInput<E> right) { 494 if (threshold != null) { 495 return limitedCompare(left, right, threshold); 496 } 497 return unlimitedCompare(left, right); 498 } 499 500 /** 501 * Gets the distance threshold. 502 * 503 * @return The distance threshold. 504 */ 505 public Integer getThreshold() { 506 return threshold; 507 } 508 }