1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.apache.commons.text.similarity;
18
19 import java.util.Arrays;
20
21 /**
22 * An algorithm for measuring the difference between two character sequences.
23 *
24 * <p>
25 * This is the number of changes needed to change one sequence into another,
26 * where each change is a single character modification (deletion, insertion
27 * or substitution).
28 * </p>
29 *
30 * @since 1.0
31 */
32 public class LevenshteinDetailedDistance implements EditDistance<LevenshteinResults> {
33
34 /**
35 * Default instance.
36 */
37 private static final LevenshteinDetailedDistance DEFAULT_INSTANCE = new LevenshteinDetailedDistance();
38 /**
39 * Threshold.
40 */
41 private final Integer threshold;
42
43 /**
44 * <p>
45 * This returns the default instance that uses a version
46 * of the algorithm that does not use a threshold parameter.
47 * </p>
48 *
49 * @see LevenshteinDetailedDistance#getDefaultInstance()
50 */
51 public LevenshteinDetailedDistance() {
52 this(null);
53 }
54
55 /**
56 * If the threshold is not null, distance calculations will be limited to a maximum length.
57 *
58 * <p>If the threshold is null, the unlimited version of the algorithm will be used.</p>
59 *
60 * @param threshold If this is null then distances calculations will not be limited. This may not be negative.
61 */
62 public LevenshteinDetailedDistance(final Integer threshold) {
63 if (threshold != null && threshold < 0) {
64 throw new IllegalArgumentException("Threshold must not be negative");
65 }
66 this.threshold = threshold;
67 }
68
69 /**
70 * <p>Find the Levenshtein distance between two Strings.</p>
71 *
72 * <p>A higher score indicates a greater distance.</p>
73 *
74 * <p>The previous implementation of the Levenshtein distance algorithm
75 * was from <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a></p>
76 *
77 * <p>Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError
78 * which can occur when my Java implementation is used with very large strings.<br>
79 * This implementation of the Levenshtein distance algorithm
80 * is from <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a></p>
81 *
82 * <pre>
83 * distance.apply(null, *) = IllegalArgumentException
84 * distance.apply(*, null) = IllegalArgumentException
85 * distance.apply("","") = 0
86 * distance.apply("","a") = 1
87 * distance.apply("aaapppp", "") = 7
88 * distance.apply("frog", "fog") = 1
89 * distance.apply("fly", "ant") = 3
90 * distance.apply("elephant", "hippo") = 7
91 * distance.apply("hippo", "elephant") = 7
92 * distance.apply("hippo", "zzzzzzzz") = 8
93 * distance.apply("hello", "hallo") = 1
94 * </pre>
95 *
96 * @param left the first string, must not be null
97 * @param right the second string, must not be null
98 * @return result distance, or -1
99 * @throws IllegalArgumentException if either String input {@code null}
100 */
101 @Override
102 public LevenshteinResults apply(final CharSequence left, final CharSequence right) {
103 if (threshold != null) {
104 return limitedCompare(left, right, threshold);
105 }
106 return unlimitedCompare(left, right);
107 }
108
109 /**
110 * Gets the default instance.
111 *
112 * @return the default instace
113 */
114 public static LevenshteinDetailedDistance getDefaultInstance() {
115 return DEFAULT_INSTANCE;
116 }
117
118 /**
119 * Gets the distance threshold.
120 *
121 * @return the distance threshold
122 */
123 public Integer getThreshold() {
124 return threshold;
125 }
126
127 /**
128 * Find the Levenshtein distance between two CharSequences if it's less than or
129 * equal to a given threshold.
130 *
131 * <p>
132 * This implementation follows from Algorithms on Strings, Trees and
133 * Sequences by Dan Gusfield and Chas Emerick's implementation of the
134 * Levenshtein distance algorithm from <a
135 * href="http://www.merriampark.com/ld.htm"
136 * >http://www.merriampark.com/ld.htm</a>
137 * </p>
138 *
139 * <pre>
140 * limitedCompare(null, *, *) = IllegalArgumentException
141 * limitedCompare(*, null, *) = IllegalArgumentException
142 * limitedCompare(*, *, -1) = IllegalArgumentException
143 * limitedCompare("","", 0) = 0
144 * limitedCompare("aaapppp", "", 8) = 7
145 * limitedCompare("aaapppp", "", 7) = 7
146 * limitedCompare("aaapppp", "", 6)) = -1
147 * limitedCompare("elephant", "hippo", 7) = 7
148 * limitedCompare("elephant", "hippo", 6) = -1
149 * limitedCompare("hippo", "elephant", 7) = 7
150 * limitedCompare("hippo", "elephant", 6) = -1
151 * </pre>
152 *
153 * @param left the first string, must not be null
154 * @param right the second string, must not be null
155 * @param threshold the target threshold, must not be negative
156 * @return result distance, or -1
157 */
158 private static LevenshteinResults limitedCompare(CharSequence left, CharSequence right, final int threshold) { //NOPMD
159 if (left == null || right == null) {
160 throw new IllegalArgumentException("Strings must not be null");
161 }
162 if (threshold < 0) {
163 throw new IllegalArgumentException("Threshold must not be negative");
164 }
165
166 /*
167 * This implementation only computes the distance if it's less than or
168 * equal to the threshold value, returning -1 if it's greater. The
169 * advantage is performance: unbounded distance is O(nm), but a bound of
170 * k allows us to reduce it to O(km) time by only computing a diagonal
171 * stripe of width 2k + 1 of the cost table. It is also possible to use
172 * this to compute the unbounded Levenshtein distance by starting the
173 * threshold at 1 and doubling each time until the distance is found;
174 * this is O(dm), where d is the distance.
175 *
176 * One subtlety comes from needing to ignore entries on the border of
177 * our stripe eg. p[] = |#|#|#|* d[] = *|#|#|#| We must ignore the entry
178 * to the left of the leftmost member We must ignore the entry above the
179 * rightmost member
180 *
181 * Another subtlety comes from our stripe running off the matrix if the
182 * strings aren't of the same size. Since string s is always swapped to
183 * be the shorter of the two, the stripe will always run off to the
184 * upper right instead of the lower left of the matrix.
185 *
186 * As a concrete example, suppose s is of length 5, t is of length 7,
187 * and our threshold is 1. In this case we're going to walk a stripe of
188 * length 3. The matrix would look like so:
189 *
190 * <pre>
191 * 1 2 3 4 5
192 * 1 |#|#| | | |
193 * 2 |#|#|#| | |
194 * 3 | |#|#|#| |
195 * 4 | | |#|#|#|
196 * 5 | | | |#|#|
197 * 6 | | | | |#|
198 * 7 | | | | | |
199 * </pre>
200 *
201 * Note how the stripe leads off the table as there is no possible way
202 * to turn a string of length 5 into one of length 7 in edit distance of
203 * 1.
204 *
205 * Additionally, this implementation decreases memory usage by using two
206 * single-dimensional arrays and swapping them back and forth instead of
207 * allocating an entire n by m matrix. This requires a few minor
208 * changes, such as immediately returning when it's detected that the
209 * stripe has run off the matrix and initially filling the arrays with
210 * large values so that entries we don't compute are ignored.
211 *
212 * See Algorithms on Strings, Trees and Sequences by Dan Gusfield for
213 * some discussion.
214 */
215
216 int n = left.length(); // length of left
217 int m = right.length(); // length of right
218
219 // if one string is empty, the edit distance is necessarily the length of the other
220 if (n == 0) {
221 return m <= threshold ? new LevenshteinResults(m, m, 0, 0) : new LevenshteinResults(-1, 0, 0, 0);
222 } else if (m == 0) {
223 return n <= threshold ? new LevenshteinResults(n, 0, n, 0) : new LevenshteinResults(-1, 0, 0, 0);
224 }
225
226 boolean swapped = false;
227 if (n > m) {
228 // swap the two strings to consume less memory
229 final CharSequence tmp = left;
230 left = right;
231 right = tmp;
232 n = m;
233 m = right.length();
234 swapped = true;
235 }
236
237 int[] p = new int[n + 1]; // 'previous' cost array, horizontally
238 int[] d = new int[n + 1]; // cost array, horizontally
239 int[] tempD; // placeholder to assist in swapping p and d
240 final int[][] matrix = new int[m + 1][n + 1];
241
242 //filling the first row and first column values in the matrix
243 for (int index = 0; index <= n; index++) {
244 matrix[0][index] = index;
245 }
246 for (int index = 0; index <= m; index++) {
247 matrix[index][0] = index;
248 }
249
250 // fill in starting table values
251 final int boundary = Math.min(n, threshold) + 1;
252 for (int i = 0; i < boundary; i++) {
253 p[i] = i;
254 }
255 // these fills ensure that the value above the rightmost entry of our
256 // stripe will be ignored in following loop iterations
257 Arrays.fill(p, boundary, p.length, Integer.MAX_VALUE);
258 Arrays.fill(d, Integer.MAX_VALUE);
259
260 // iterates through t
261 for (int j = 1; j <= m; j++) {
262 final char rightJ = right.charAt(j - 1); // jth character of right
263 d[0] = j;
264
265 // compute stripe indices, constrain to array size
266 final int min = Math.max(1, j - threshold);
267 final int max = j > Integer.MAX_VALUE - threshold ? n : Math.min(
268 n, j + threshold);
269
270 // the stripe may lead off of the table if s and t are of different sizes
271 if (min > max) {
272 return new LevenshteinResults(-1, 0, 0, 0);
273 }
274
275 // ignore entry left of leftmost
276 if (min > 1) {
277 d[min - 1] = Integer.MAX_VALUE;
278 }
279
280 // iterates through [min, max] in s
281 for (int i = min; i <= max; i++) {
282 if (left.charAt(i - 1) == rightJ) {
283 // diagonally left and up
284 d[i] = p[i - 1];
285 } else {
286 // 1 + minimum of cell to the left, to the top, diagonally left and up
287 d[i] = 1 + Math.min(Math.min(d[i - 1], p[i]), p[i - 1]);
288 }
289 matrix[j][i] = d[i];
290 }
291
292 // copy current distance counts to 'previous row' distance counts
293 tempD = p;
294 p = d;
295 d = tempD;
296 }
297
298 // if p[n] is greater than the threshold, there's no guarantee on it being the correct distance
299 if (p[n] <= threshold) {
300 return findDetailedResults(left, right, matrix, swapped);
301 }
302 return new LevenshteinResults(-1, 0, 0, 0);
303 }
304
305 /**
306 * <p>Find the Levenshtein distance between two Strings.</p>
307 *
308 * <p>A higher score indicates a greater distance.</p>
309 *
310 * <p>The previous implementation of the Levenshtein distance algorithm
311 * was from <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a></p>
312 *
313 * <p>Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError
314 * which can occur when my Java implementation is used with very large strings.<br>
315 * This implementation of the Levenshtein distance algorithm
316 * is from <a href="http://www.merriampark.com/ldjava.htm">http://www.merriampark.com/ldjava.htm</a></p>
317 *
318 * <pre>
319 * unlimitedCompare(null, *) = IllegalArgumentException
320 * unlimitedCompare(*, null) = IllegalArgumentException
321 * unlimitedCompare("","") = 0
322 * unlimitedCompare("","a") = 1
323 * unlimitedCompare("aaapppp", "") = 7
324 * unlimitedCompare("frog", "fog") = 1
325 * unlimitedCompare("fly", "ant") = 3
326 * unlimitedCompare("elephant", "hippo") = 7
327 * unlimitedCompare("hippo", "elephant") = 7
328 * unlimitedCompare("hippo", "zzzzzzzz") = 8
329 * unlimitedCompare("hello", "hallo") = 1
330 * </pre>
331 *
332 * @param left the first String, must not be null
333 * @param right the second String, must not be null
334 * @return result distance, or -1
335 * @throws IllegalArgumentException if either String input {@code null}
336 */
337 private static LevenshteinResults unlimitedCompare(CharSequence left, CharSequence right) {
338 if (left == null || right == null) {
339 throw new IllegalArgumentException("Strings must not be null");
340 }
341
342 /*
343 The difference between this impl. and the previous is that, rather
344 than creating and retaining a matrix of size s.length() + 1 by t.length() + 1,
345 we maintain two single-dimensional arrays of length s.length() + 1. The first, d,
346 is the 'current working' distance array that maintains the newest distance cost
347 counts as we iterate through the characters of String s. Each time we increment
348 the index of String t we are comparing, d is copied to p, the second int[]. Doing so
349 allows us to retain the previous cost counts as required by the algorithm (taking
350 the minimum of the cost count to the left, up one, and diagonally up and to the left
351 of the current cost count being calculated). (Note that the arrays aren't really
352 copied anymore, just switched...this is clearly much better than cloning an array
353 or doing a System.arraycopy() each time through the outer loop.)
354
355 Effectively, the difference between the two implementations is this one does not
356 cause an out of memory condition when calculating the LD over two very large strings.
357 */
358
359 int n = left.length(); // length of left
360 int m = right.length(); // length of right
361
362 if (n == 0) {
363 return new LevenshteinResults(m, m, 0, 0);
364 } else if (m == 0) {
365 return new LevenshteinResults(n, 0, n, 0);
366 }
367 boolean swapped = false;
368 if (n > m) {
369 // swap the input strings to consume less memory
370 final CharSequence tmp = left;
371 left = right;
372 right = tmp;
373 n = m;
374 m = right.length();
375 swapped = true;
376 }
377
378 int[] p = new int[n + 1]; // 'previous' cost array, horizontally
379 int[] d = new int[n + 1]; // cost array, horizontally
380 int[] tempD; //placeholder to assist in swapping p and d
381 final int[][] matrix = new int[m + 1][n + 1];
382
383 // filling the first row and first column values in the matrix
384 for (int index = 0; index <= n; index++) {
385 matrix[0][index] = index;
386 }
387 for (int index = 0; index <= m; index++) {
388 matrix[index][0] = index;
389 }
390
391 // indexes into strings left and right
392 int i; // iterates through left
393 int j; // iterates through right
394
395 char rightJ; // jth character of right
396
397 int cost; // cost
398 for (i = 0; i <= n; i++) {
399 p[i] = i;
400 }
401
402 for (j = 1; j <= m; j++) {
403 rightJ = right.charAt(j - 1);
404 d[0] = j;
405
406 for (i = 1; i <= n; i++) {
407 cost = left.charAt(i - 1) == rightJ ? 0 : 1;
408 // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
409 d[i] = Math.min(Math.min(d[i - 1] + 1, p[i] + 1), p[i - 1] + cost);
410 //filling the matrix
411 matrix[j][i] = d[i];
412 }
413
414 // copy current distance counts to 'previous row' distance counts
415 tempD = p;
416 p = d;
417 d = tempD;
418 }
419 return findDetailedResults(left, right, matrix, swapped);
420 }
421
422 /**
423 * Finds count for each of the three [insert, delete, substitute] operations
424 * needed. This is based on the matrix formed based on the two character
425 * sequence.
426 *
427 * @param left character sequence which need to be converted from
428 * @param right character sequence which need to be converted to
429 * @param matrix two dimensional array containing
430 * @param swapped tells whether the value for left character sequence and right
431 * character sequence were swapped to save memory
432 * @return result object containing the count of insert, delete and substitute and total count needed
433 */
434 private static LevenshteinResults findDetailedResults(final CharSequence left, final CharSequence right, final int[][] matrix,
435 final boolean swapped) {
436
437 int delCount = 0;
438 int addCount = 0;
439 int subCount = 0;
440
441 int rowIndex = right.length();
442 int columnIndex = left.length();
443
444 int dataAtLeft = 0;
445 int dataAtTop = 0;
446 int dataAtDiagonal = 0;
447 int data = 0;
448 boolean deleted = false;
449 boolean added = false;
450
451 while (rowIndex >= 0 && columnIndex >= 0) {
452
453 if (columnIndex == 0) {
454 dataAtLeft = -1;
455 } else {
456 dataAtLeft = matrix[rowIndex][columnIndex - 1];
457 }
458 if (rowIndex == 0) {
459 dataAtTop = -1;
460 } else {
461 dataAtTop = matrix[rowIndex - 1][columnIndex];
462 }
463 if (rowIndex > 0 && columnIndex > 0) {
464 dataAtDiagonal = matrix[rowIndex - 1][columnIndex - 1];
465 } else {
466 dataAtDiagonal = -1;
467 }
468 if (dataAtLeft == -1 && dataAtTop == -1 && dataAtDiagonal == -1) {
469 break;
470 }
471 data = matrix[rowIndex][columnIndex];
472
473 // case in which the character at left and right are the same,
474 // in this case none of the counters will be incremented.
475 if (columnIndex > 0 && rowIndex > 0 && left.charAt(columnIndex - 1) == right.charAt(rowIndex - 1)) {
476 columnIndex--;
477 rowIndex--;
478 continue;
479 }
480
481 // handling insert and delete cases.
482 deleted = false;
483 added = false;
484 if (data - 1 == dataAtLeft && (data <= dataAtDiagonal && data <= dataAtTop)
485 || (dataAtDiagonal == -1 && dataAtTop == -1)) { // NOPMD
486 columnIndex--;
487 if (swapped) {
488 addCount++;
489 added = true;
490 } else {
491 delCount++;
492 deleted = true;
493 }
494 } else if (data - 1 == dataAtTop && (data <= dataAtDiagonal && data <= dataAtLeft)
495 || (dataAtDiagonal == -1 && dataAtLeft == -1)) { // NOPMD
496 rowIndex--;
497 if (swapped) {
498 delCount++;
499 deleted = true;
500 } else {
501 addCount++;
502 added = true;
503 }
504 }
505
506 // substituted case
507 if (!added && !deleted) {
508 subCount++;
509 columnIndex--;
510 rowIndex--;
511 }
512 }
513 return new LevenshteinResults(addCount + delCount + subCount, addCount, delCount, subCount);
514 }
515 }