1 /* 2 * Licensed to the Apache Software Foundation (ASF) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * The ASF licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.apache.commons.text.similarity; 18 19 /** 20 * A similarity algorithm indicating the length of the longest common subsequence between two strings. 21 * 22 * <p> 23 * The Longest common subsequence algorithm returns the length of the longest subsequence that two strings have in 24 * common. Two strings that are entirely different, return a value of 0, and two strings that return a value 25 * of the commonly shared length implies that the strings are completely the same in value and position. 26 * <i>Note.</i> Generally this algorithm is fairly inefficient, as for length <i>m</i>, <i>n</i> of the input 27 * <code>CharSequence</code>'s <code>left</code> and <code>right</code> respectively, the runtime of the 28 * algorithm is <i>O(m*n)</i>. 29 * </p> 30 * 31 * <p> 32 * This implementation is based on the Longest Commons Substring algorithm 33 * from <a href="https://en.wikipedia.org/wiki/Longest_common_subsequence_problem"> 34 * https://en.wikipedia.org/wiki/Longest_common_subsequence_problem</a>. 35 * </p> 36 * 37 * <p>For further reading see:</p> 38 * 39 * <p>Lothaire, M. <i>Applied combinatorics on words</i>. New York: Cambridge U Press, 2005. <b>12-13</b></p> 40 * 41 * @since 1.0 42 */ 43 public class LongestCommonSubsequence implements SimilarityScore<Integer> { 44 45 /** 46 * Calculates longestCommonSubsequence similarity score of two <code>CharSequence</code>'s passed as 47 * input. 48 * 49 * @param left first character sequence 50 * @param right second character sequence 51 * @return longestCommonSubsequenceLength 52 * @throws IllegalArgumentException 53 * if either String input {@code null} 54 */ 55 @Override 56 public Integer apply(final CharSequence left, final CharSequence right) { 57 // Quick return for invalid inputs 58 if (left == null || right == null) { 59 throw new IllegalArgumentException("Inputs must not be null"); 60 } 61 return logestCommonSubsequence(left, right).length(); 62 } 63 64 /** 65 * 66 * Computes the longestCommonSubsequence between the two <code>CharSequence</code>'s passed as 67 * input. 68 * 69 * <p> 70 * Note, a substring and 71 * subsequence are not necessarily the same thing. Indeed, <code>abcxyzqrs</code> and 72 * <code>xyzghfm</code> have both the same common substring and subsequence, namely <code>xyz</code>. However, 73 * <code>axbyczqrs</code> and <code>abcxyzqtv</code> have the longest common subsequence <code>xyzq</code> because a 74 * subsequence need not have adjacent characters. 75 * </p> 76 * 77 * <p> 78 * For reference, we give the definition of a subsequence for the reader: a <i>subsequence</i> is a sequence that can be 79 * derived from another sequence by deleting some elements without changing the order of the remaining elements. 80 * </p> 81 * 82 * @param left first character sequence 83 * @param right second character sequence 84 * @return lcsLengthArray 85 * @throws IllegalArgumentException 86 * if either String input {@code null} 87 */ 88 public CharSequence logestCommonSubsequence(final CharSequence left, final CharSequence right) { 89 // Quick return 90 if (left == null || right == null) { 91 throw new IllegalArgumentException("Inputs must not be null"); 92 } 93 StringBuilder longestCommonSubstringArray = new StringBuilder(Math.max(left.length(), right.length())); 94 int[][] lcsLengthArray = longestCommonSubstringLengthArray(left, right); 95 int i = left.length() - 1; 96 int j = right.length() - 1; 97 int k = lcsLengthArray[left.length()][right.length()] - 1; 98 while (k >= 0) { 99 if (left.charAt(i) == right.charAt(j)) { 100 longestCommonSubstringArray.append(left.charAt(i)); 101 i = i - 1; 102 j = j - 1; 103 k = k - 1; 104 } else if (lcsLengthArray[i + 1][j] < lcsLengthArray[i][j + 1]) { 105 i = i - 1; 106 } else { 107 j = j - 1; 108 } 109 } 110 return longestCommonSubstringArray.reverse().toString(); 111 } 112 113 /** 114 * 115 * Computes the lcsLengthArray for the sake of doing the actual lcs calculation. This is the 116 * dynamic programming portion of the algorithm, and is the reason for the runtime complexity being 117 * O(m*n), where m=left.length() and n=right.length(). 118 * 119 * @param left first character sequence 120 * @param right second character sequence 121 * @return lcsLengthArray 122 */ 123 public int[][] longestCommonSubstringLengthArray(final CharSequence left, final CharSequence right) { 124 int[][] lcsLengthArray = new int[left.length() + 1][right.length() + 1]; 125 for (int i=0; i < left.length(); i++) { 126 for (int j=0; j < right.length(); j++) { 127 if (i == 0) { 128 lcsLengthArray[i][j] = 0; 129 } 130 if (j == 0) { 131 lcsLengthArray[i][j] = 0; 132 } 133 if (left.charAt(i) == right.charAt(j)) { 134 lcsLengthArray[i + 1][j + 1] = lcsLengthArray[i][j] + 1; 135 } else { 136 lcsLengthArray[i + 1][j + 1] = Math.max(lcsLengthArray[i + 1][j], lcsLengthArray[i][j + 1]); 137 } 138 } 139 } 140 return lcsLengthArray; 141 } 142 143 }