View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *     http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  
18  package org.apache.commons.configuration2;
19  
20  import java.util.Collection;
21  import java.util.Collections;
22  import java.util.HashMap;
23  import java.util.Iterator;
24  import java.util.LinkedHashSet;
25  import java.util.LinkedList;
26  import java.util.List;
27  import java.util.Map;
28  import java.util.Objects;
29  import java.util.Set;
30  import java.util.Stack;
31  import java.util.stream.Collectors;
32  
33  import org.apache.commons.configuration2.event.ConfigurationEvent;
34  import org.apache.commons.configuration2.ex.ConfigurationRuntimeException;
35  import org.apache.commons.configuration2.sync.NoOpSynchronizer;
36  import org.apache.commons.configuration2.tree.ConfigurationNodeVisitorAdapter;
37  import org.apache.commons.configuration2.tree.DefaultExpressionEngine;
38  import org.apache.commons.configuration2.tree.ExpressionEngine;
39  import org.apache.commons.configuration2.tree.NodeAddData;
40  import org.apache.commons.configuration2.tree.NodeHandler;
41  import org.apache.commons.configuration2.tree.NodeKeyResolver;
42  import org.apache.commons.configuration2.tree.NodeModel;
43  import org.apache.commons.configuration2.tree.NodeTreeWalker;
44  import org.apache.commons.configuration2.tree.NodeUpdateData;
45  import org.apache.commons.configuration2.tree.QueryResult;
46  
47  /**
48   * <p>
49   * A specialized configuration class that extends its base class by the ability of keeping more structure in the stored
50   * properties.
51   * </p>
52   * <p>
53   * There are some sources of configuration data that cannot be stored very well in a {@code BaseConfiguration} object
54   * because then their structure is lost. This is for instance true for XML documents. This class can deal with such
55   * structured configuration sources by storing the properties in a tree-like organization. The exact storage structure
56   * of the underlying data does not matter for the configuration instance; it uses a {@link NodeModel} object for
57   * accessing it.
58   * </p>
59   * <p>
60   * The hierarchical organization allows for a more sophisticated access to single properties. As an example consider the
61   * following XML document:
62   * </p>
63   *
64   * <pre>
65   * &lt;database&gt;
66   *   &lt;tables&gt;
67   *     &lt;table&gt;
68   *       &lt;name&gt;users&lt;/name&gt;
69   *       &lt;fields&gt;
70   *         &lt;field&gt;
71   *           &lt;name&gt;lid&lt;/name&gt;
72   *           &lt;type&gt;long&lt;/name&gt;
73   *         &lt;/field&gt;
74   *         &lt;field&gt;
75   *           &lt;name&gt;usrName&lt;/name&gt;
76   *           &lt;type&gt;java.lang.String&lt;/type&gt;
77   *         &lt;/field&gt;
78   *        ...
79   *       &lt;/fields&gt;
80   *     &lt;/table&gt;
81   *     &lt;table&gt;
82   *       &lt;name&gt;documents&lt;/name&gt;
83   *       &lt;fields&gt;
84   *         &lt;field&gt;
85   *           &lt;name&gt;docid&lt;/name&gt;
86   *           &lt;type&gt;long&lt;/type&gt;
87   *         &lt;/field&gt;
88   *         ...
89   *       &lt;/fields&gt;
90   *     &lt;/table&gt;
91   *     ...
92   *   &lt;/tables&gt;
93   * &lt;/database&gt;
94   * </pre>
95   *
96   * <p>
97   * If this document is parsed and stored in a hierarchical configuration object (which can be done by one of the sub
98   * classes), there are enhanced possibilities of accessing properties. Per default, the keys for querying information
99   * can contain indices that select a specific element if there are multiple hits.
100  * </p>
101  * <p>
102  * For instance the key {@code tables.table(0).name} can be used to find out the name of the first table. In opposite
103  * {@code tables.table.name} would return a collection with the names of all available tables. Similarly the key
104  * {@code tables.table(1).fields.field.name} returns a collection with the names of all fields of the second table. If
105  * another index is added after the {@code field} element, a single field can be accessed:
106  * {@code tables.table(1).fields.field(0).name}.
107  * </p>
108  * <p>
109  * There is a {@code getMaxIndex()} method that returns the maximum allowed index that can be added to a given property
110  * key. This method can be used to iterate over all values defined for a certain property.
111  * </p>
112  * <p>
113  * Since the 1.3 release of <em>Commons Configuration</em> hierarchical configurations support an <em>expression
114  * engine</em>. This expression engine is responsible for evaluating the passed in configuration keys and map them to
115  * the stored properties. The examples above are valid for the default expression engine, which is used when a new
116  * {@code AbstractHierarchicalConfiguration} instance is created. With the {@code setExpressionEngine()} method a
117  * different expression engine can be set. For instance with
118  * {@link org.apache.commons.configuration2.tree.xpath.XPathExpressionEngine} there is an expression engine available
119  * that supports configuration keys in XPATH syntax.
120  * </p>
121  * <p>
122  * In addition to the events common for all configuration classes, hierarchical configurations support some more events
123  * that correspond to some specific methods and features. For those events specific event type constants in
124  * {@code ConfigurationEvent} exist:
125  * </p>
126  * <dl>
127  * <dt><em>ADD_NODES</em></dt>
128  * <dd>The {@code addNodes()} method was called; the event object contains the key, to which the nodes were added, and a
129  * collection with the new nodes as value.</dd>
130  * <dt><em>CLEAR_TREE</em></dt>
131  * <dd>The {@code clearTree()} method was called; the event object stores the key of the removed sub tree.</dd>
132  * <dt><em>SUBNODE_CHANGED</em></dt>
133  * <dd>A {@code SubnodeConfiguration} that was created from this configuration has been changed. The value property of
134  * the event object contains the original event object as it was sent by the subnode configuration.</dd>
135  * </dl>
136  * <p>
137  * Whether an {@code AbstractHierarchicalConfiguration} object is thread-safe or not depends on the underlying
138  * {@code NodeModel} and the {@link org.apache.commons.configuration2.sync.Synchronizer Synchronizer} it is associated
139  * with. Some {@code NodeModel} implementations are inherently thread-safe; they do not require a special
140  * {@code Synchronizer}. (Per default, a dummy {@code Synchronizer} is used which is not thread-safe!) The methods for
141  * querying or updating configuration data invoke this {@code Synchronizer} accordingly. When accessing the
142  * configuration's root node directly, the client application is responsible for proper synchronization. This is
143  * achieved by calling the methods {@link #lock(org.apache.commons.configuration2.sync.LockMode) lock()}, and
144  * {@link #unlock(org.apache.commons.configuration2.sync.LockMode) unlock()} with a proper
145  * {@link org.apache.commons.configuration2.sync.LockMode LockMode} argument. In any case, it is recommended to not
146  * access the root node directly, but to use corresponding methods for querying or updating configuration data instead.
147  * Direct manipulations of a configuration's node structure circumvent many internal mechanisms and thus can cause
148  * undesired effects. For concrete subclasses dealing with specific node structures, this situation may be different.
149  * </p>
150  *
151  * @since 2.0
152  * @param <T> the type of the nodes managed by this hierarchical configuration
153  */
154 public abstract class AbstractHierarchicalConfiguration<T> extends AbstractConfiguration
155     implements Cloneable, NodeKeyResolver<T>, HierarchicalConfiguration<T> {
156 
157     /** The model for managing the data stored in this configuration. */
158     private NodeModel<T> nodeModel;
159 
160     /** Stores the expression engine for this instance. */
161     private ExpressionEngine expressionEngine;
162 
163     /**
164      * Creates a new instance of {@code AbstractHierarchicalConfiguration} and sets the {@code NodeModel} to be used.
165      *
166      * @param nodeModel the {@code NodeModel}
167      */
168     protected AbstractHierarchicalConfiguration(final NodeModel<T> nodeModel) {
169         this.nodeModel = nodeModel;
170     }
171 
172     /**
173      * {@inheritDoc} This implementation handles synchronization and delegates to {@code getRootElementNameInternal()}.
174      */
175     @Override
176     public final String getRootElementName() {
177         beginRead(false);
178         try {
179             return getRootElementNameInternal();
180         } finally {
181             endRead();
182         }
183     }
184 
185     /**
186      * Actually obtains the name of the root element. This method is called by {@code getRootElementName()}. It just returns
187      * the name of the root node. Subclasses that treat the root element name differently can override this method.
188      *
189      * @return the name of this configuration's root element
190      */
191     protected String getRootElementNameInternal() {
192         final NodeHandler<T> nodeHandler = getModel().getNodeHandler();
193         return nodeHandler.nodeName(nodeHandler.getRootNode());
194     }
195 
196     /**
197      * {@inheritDoc} This implementation returns the configuration's {@code NodeModel}. It is guarded by the current
198      * {@code Synchronizer}.
199      */
200     @Override
201     public NodeModel<T> getNodeModel() {
202         beginRead(false);
203         try {
204             return getModel();
205         } finally {
206             endRead();
207         }
208     }
209 
210     /**
211      * Gets the expression engine used by this configuration. This method will never return <b>null</b>; if no specific
212      * expression engine was set, the default expression engine will be returned.
213      *
214      * @return the current expression engine
215      * @since 1.3
216      */
217     @Override
218     public ExpressionEngine getExpressionEngine() {
219         return expressionEngine != null ? expressionEngine : DefaultExpressionEngine.INSTANCE;
220     }
221 
222     /**
223      * Sets the expression engine to be used by this configuration. All property keys this configuration has to deal with
224      * will be interpreted by this engine.
225      *
226      * @param expressionEngine the new expression engine; can be <b>null</b>, then the default expression engine will be
227      *        used
228      * @since 1.3
229      */
230     @Override
231     public void setExpressionEngine(final ExpressionEngine expressionEngine) {
232         this.expressionEngine = expressionEngine;
233     }
234 
235     /**
236      * Fetches the specified property. This task is delegated to the associated expression engine.
237      *
238      * @param key the key to be looked up
239      * @return the found value
240      */
241     @Override
242     protected Object getPropertyInternal(final String key) {
243         final List<QueryResult<T>> results = fetchNodeList(key);
244 
245         if (results.isEmpty()) {
246             return null;
247         }
248         final NodeHandler<T> handler = getModel().getNodeHandler();
249         final List<Object> list = results.stream().map(r -> valueFromResult(r, handler)).filter(Objects::nonNull).collect(Collectors.toList());
250 
251         if (list.size() < 1) {
252             return null;
253         }
254         return list.size() == 1 ? list.get(0) : list;
255     }
256 
257     /**
258      * Adds the property with the specified key. This task will be delegated to the associated {@code ExpressionEngine}, so
259      * the passed in key must match the requirements of this implementation.
260      *
261      * @param key the key of the new property
262      * @param obj the value of the new property
263      */
264     @Override
265     protected void addPropertyInternal(final String key, final Object obj) {
266         addPropertyToModel(key, getListDelimiterHandler().parse(obj));
267     }
268 
269     /**
270      * {@inheritDoc} This method is not called in the normal way (via {@code addProperty()} for hierarchical configurations
271      * because all values to be added for the property have to be passed to the model in a single step. However, to allow
272      * derived classes to add an arbitrary value as an object, a special implementation is provided here. The passed in
273      * object is not parsed as a list, but passed directly as only value to the model.
274      */
275     @Override
276     protected void addPropertyDirect(final String key, final Object value) {
277         addPropertyToModel(key, Collections.singleton(value));
278     }
279 
280     /**
281      * Helper method for executing an add property operation on the model.
282      *
283      * @param key the key of the new property
284      * @param values the values to be added for this property
285      */
286     private void addPropertyToModel(final String key, final Iterable<?> values) {
287         getModel().addProperty(key, values, this);
288     }
289 
290     /**
291      * Adds a collection of nodes at the specified position of the configuration tree. This method works similar to
292      * {@code addProperty()}, but instead of a single property a whole collection of nodes can be added - and thus complete
293      * configuration sub trees. E.g. with this method it is possible to add parts of another
294      * {@code BaseHierarchicalConfiguration} object to this object. If the passed in key refers to an existing and unique
295      * node, the new nodes are added to this node. Otherwise a new node will be created at the specified position in the
296      * hierarchy. Implementation node: This method performs some book-keeping and then delegates to
297      * {@code addNodesInternal()}.
298      *
299      * @param key the key where the nodes are to be added; can be <b>null</b>, then they are added to the root node
300      * @param nodes a collection with the {@code Node} objects to be added
301      */
302     @Override
303     public final void addNodes(final String key, final Collection<? extends T> nodes) {
304         if (nodes == null || nodes.isEmpty()) {
305             return;
306         }
307 
308         beginWrite(false);
309         try {
310             fireEvent(ConfigurationEvent.ADD_NODES, key, nodes, true);
311             addNodesInternal(key, nodes);
312             fireEvent(ConfigurationEvent.ADD_NODES, key, nodes, false);
313         } finally {
314             endWrite();
315         }
316     }
317 
318     /**
319      * Actually adds a collection of new nodes to this configuration. This method is called by {@code addNodes()}. It can be
320      * overridden by subclasses that need to adapt this operation.
321      *
322      * @param key the key where the nodes are to be added; can be <b>null</b>, then they are added to the root node
323      * @param nodes a collection with the {@code Node} objects to be added
324      * @since 2.0
325      */
326     protected void addNodesInternal(final String key, final Collection<? extends T> nodes) {
327         getModel().addNodes(key, nodes, this);
328     }
329 
330     /**
331      * Checks if this configuration is empty. Empty means that there are no keys with any values, though there can be some
332      * (empty) nodes.
333      *
334      * @return a flag if this configuration is empty
335      */
336     @Override
337     protected boolean isEmptyInternal() {
338         return !nodeDefined(getModel().getNodeHandler().getRootNode());
339     }
340 
341     /**
342      * Checks if the specified key is contained in this configuration. Note that for this configuration the term
343      * &quot;contained&quot; means that the key has an associated value. If there is a node for this key that has no value
344      * but children (either defined or undefined), this method will still return <b>false </b>.
345      *
346      * @param key the key to be checked
347      * @return a flag if this key is contained in this configuration
348      */
349     @Override
350     protected boolean containsKeyInternal(final String key) {
351         return getPropertyInternal(key) != null;
352     }
353 
354     /**
355      * Sets the value of the specified property.
356      *
357      * @param key the key of the property to set
358      * @param value the new value of this property
359      */
360     @Override
361     protected void setPropertyInternal(final String key, final Object value) {
362         getModel().setProperty(key, value, this);
363     }
364 
365     /**
366      * {@inheritDoc} This implementation delegates to the expression engine.
367      */
368     @Override
369     public List<QueryResult<T>> resolveKey(final T root, final String key, final NodeHandler<T> handler) {
370         return getExpressionEngine().query(root, key, handler);
371     }
372 
373     /**
374      * {@inheritDoc} This implementation delegates to {@code resolveKey()} and then filters out attribute results.
375      */
376     @Override
377     public List<T> resolveNodeKey(final T root, final String key, final NodeHandler<T> handler) {
378         return resolveKey(root, key, handler).stream().filter(r -> !r.isAttributeResult()).map(QueryResult::getNode)
379             .collect(Collectors.toCollection(LinkedList::new));
380     }
381 
382     /**
383      * {@inheritDoc} This implementation delegates to the expression engine.
384      */
385     @Override
386     public NodeAddData<T> resolveAddKey(final T root, final String key, final NodeHandler<T> handler) {
387         return getExpressionEngine().prepareAdd(root, key, handler);
388     }
389 
390     /**
391      * {@inheritDoc} This implementation executes a query for the given key and constructs a {@code NodeUpdateData} object
392      * based on the results. It determines which nodes need to be changed and whether new ones need to be added or existing
393      * ones need to be removed.
394      */
395     @Override
396     public NodeUpdateData<T> resolveUpdateKey(final T root, final String key, final Object newValue, final NodeHandler<T> handler) {
397         final Iterator<QueryResult<T>> itNodes = fetchNodeList(key).iterator();
398         final Iterator<?> itValues = getListDelimiterHandler().parse(newValue).iterator();
399         final Map<QueryResult<T>, Object> changedValues = new HashMap<>();
400         Collection<Object> additionalValues = null;
401         Collection<QueryResult<T>> removedItems = null;
402 
403         while (itNodes.hasNext() && itValues.hasNext()) {
404             changedValues.put(itNodes.next(), itValues.next());
405         }
406 
407         // Add additional nodes if necessary
408         if (itValues.hasNext()) {
409             additionalValues = new LinkedList<>();
410             itValues.forEachRemaining(additionalValues::add);
411         }
412 
413         // Remove remaining nodes
414         if (itNodes.hasNext()) {
415             removedItems = new LinkedList<>();
416             itNodes.forEachRemaining(removedItems::add);
417         }
418 
419         return new NodeUpdateData<>(changedValues, additionalValues, removedItems, key);
420     }
421 
422     /**
423      * {@inheritDoc} This implementation uses the expression engine to generate a canonical key for the passed in node. For
424      * this purpose, the path to the root node has to be traversed. The cache is used to store and access keys for nodes
425      * encountered on the path.
426      */
427     @Override
428     public String nodeKey(final T node, final Map<T, String> cache, final NodeHandler<T> handler) {
429         final List<T> paths = new LinkedList<>();
430         T currentNode = node;
431         String key = cache.get(node);
432         while (key == null && currentNode != null) {
433             paths.add(0, currentNode);
434             currentNode = handler.getParent(currentNode);
435             key = cache.get(currentNode);
436         }
437 
438         for (final T n : paths) {
439             final String currentKey = getExpressionEngine().canonicalKey(n, key, handler);
440             cache.put(n, currentKey);
441             key = currentKey;
442         }
443 
444         return key;
445     }
446 
447     /**
448      * Clears this configuration. This is a more efficient implementation than the one inherited from the base class. It
449      * delegates to the node model.
450      */
451     @Override
452     protected void clearInternal() {
453         getModel().clear(this);
454     }
455 
456     /**
457      * Removes all values of the property with the given name and of keys that start with this name. So if there is a
458      * property with the key &quot;foo&quot; and a property with the key &quot;foo.bar&quot;, a call of
459      * {@code clearTree("foo")} would remove both properties.
460      *
461      * @param key the key of the property to be removed
462      */
463     @Override
464     public final void clearTree(final String key) {
465         beginWrite(false);
466         try {
467             fireEvent(ConfigurationEvent.CLEAR_TREE, key, null, true);
468             fireEvent(ConfigurationEvent.CLEAR_TREE, key, clearTreeInternal(key), false);
469         } finally {
470             endWrite();
471         }
472     }
473 
474     /**
475      * Actually clears the tree of elements referenced by the given key. This method is called by {@code clearTree()}.
476      * Subclasses that need to adapt this operation can override this method. This base implementation delegates to the node
477      * model.
478      *
479      * @param key the key of the property to be removed
480      * @return an object with information about the nodes that have been removed (this is needed for firing a meaningful
481      *         event of type CLEAR_TREE)
482      * @since 2.0
483      */
484     protected Object clearTreeInternal(final String key) {
485         return getModel().clearTree(key, this);
486     }
487 
488     /**
489      * Removes the property with the given key. Properties with names that start with the given key (i.e. properties below
490      * the specified key in the hierarchy) won't be affected. This implementation delegates to the node+ model.
491      *
492      * @param key the key of the property to be removed
493      */
494     @Override
495     protected void clearPropertyDirect(final String key) {
496         getModel().clearProperty(key, this);
497     }
498 
499     /**
500      * {@inheritDoc} This implementation is slightly more efficient than the default implementation. It does not iterate
501      * over the key set, but directly queries its size after it has been constructed. Note that constructing the key set is
502      * still an O(n) operation.
503      */
504     @Override
505     protected int sizeInternal() {
506         return visitDefinedKeys().getKeyList().size();
507     }
508 
509     /**
510      * Gets an iterator with all keys defined in this configuration. Note that the keys returned by this method will not
511      * contain any indices. This means that some structure will be lost.
512      *
513      * @return an iterator with the defined keys in this configuration
514      */
515     @Override
516     protected Iterator<String> getKeysInternal() {
517         return visitDefinedKeys().getKeyList().iterator();
518     }
519 
520     /**
521      * Creates a {@code DefinedKeysVisitor} and visits all defined keys with it.
522      *
523      * @return the visitor after all keys have been visited
524      */
525     private DefinedKeysVisitor visitDefinedKeys() {
526         final DefinedKeysVisitor visitor = new DefinedKeysVisitor();
527         final NodeHandler<T> nodeHandler = getModel().getNodeHandler();
528         NodeTreeWalker.INSTANCE.walkDFS(nodeHandler.getRootNode(), visitor, nodeHandler);
529         return visitor;
530     }
531 
532     /**
533      * Gets an iterator with all keys defined in this configuration that start with the given prefix. The returned keys
534      * will not contain any indices. This implementation tries to locate a node whose key is the same as the passed in
535      * prefix. Then the subtree of this node is traversed, and the keys of all nodes encountered (including attributes) are
536      * added to the result set.
537      *
538      * @param prefix the prefix of the keys to start with
539      * @return an iterator with the found keys
540      */
541     @Override
542     protected Iterator<String> getKeysInternal(final String prefix) {
543         final DefinedKeysVisitor visitor = new DefinedKeysVisitor(prefix);
544         if (containsKey(prefix)) {
545             // explicitly add the prefix
546             visitor.getKeyList().add(prefix);
547         }
548 
549         final List<QueryResult<T>> results = fetchNodeList(prefix);
550         final NodeHandler<T> handler = getModel().getNodeHandler();
551 
552         results.forEach(result -> {
553             if (!result.isAttributeResult()) {
554                 handler.getChildren(result.getNode()).forEach(c -> NodeTreeWalker.INSTANCE.walkDFS(c, visitor, handler));
555                 visitor.handleAttributeKeys(prefix, result.getNode(), handler);
556             }
557         });
558 
559         return visitor.getKeyList().iterator();
560     }
561 
562     /**
563      * Gets the maximum defined index for the given key. This is useful if there are multiple values for this key. They
564      * can then be addressed separately by specifying indices from 0 to the return value of this method. If the passed in
565      * key is not contained in this configuration, result is -1.
566      *
567      * @param key the key to be checked
568      * @return the maximum defined index for this key
569      */
570     @Override
571     public final int getMaxIndex(final String key) {
572         beginRead(false);
573         try {
574             return getMaxIndexInternal(key);
575         } finally {
576             endRead();
577         }
578     }
579 
580     /**
581      * Actually retrieves the maximum defined index for the given key. This method is called by {@code getMaxIndex()}.
582      * Subclasses that need to adapt this operation have to override this method.
583      *
584      * @param key the key to be checked
585      * @return the maximum defined index for this key
586      * @since 2.0
587      */
588     protected int getMaxIndexInternal(final String key) {
589         return fetchNodeList(key).size() - 1;
590     }
591 
592     /**
593      * Creates a copy of this object. This new configuration object will contain copies of all nodes in the same structure.
594      * Registered event listeners won't be cloned; so they are not registered at the returned copy.
595      *
596      * @return the copy
597      * @since 1.2
598      */
599     @Override
600     public Object clone() {
601         beginRead(false);
602         try {
603             @SuppressWarnings("unchecked") // clone returns the same type
604             final AbstractHierarchicalConfiguration<T> copy = (AbstractHierarchicalConfiguration<T>) super.clone();
605             copy.setSynchronizer(NoOpSynchronizer.INSTANCE);
606             copy.cloneInterpolator(this);
607             copy.setSynchronizer(ConfigurationUtils.cloneSynchronizer(getSynchronizer()));
608             copy.nodeModel = cloneNodeModel();
609 
610             return copy;
611         } catch (final CloneNotSupportedException cex) {
612             // should not happen
613             throw new ConfigurationRuntimeException(cex);
614         } finally {
615             endRead();
616         }
617     }
618 
619     /**
620      * Creates a clone of the node model. This method is called by {@code clone()}.
621      *
622      * @return the clone of the {@code NodeModel}
623      * @since 2.0
624      */
625     protected abstract NodeModel<T> cloneNodeModel();
626 
627     /**
628      * Helper method for resolving the specified key.
629      *
630      * @param key the key
631      * @return a list with all results selected by this key
632      */
633     protected List<QueryResult<T>> fetchNodeList(final String key) {
634         final NodeHandler<T> nodeHandler = getModel().getNodeHandler();
635         return resolveKey(nodeHandler.getRootNode(), key, nodeHandler);
636     }
637 
638     /**
639      * Checks if the specified node is defined.
640      *
641      * @param node the node to be checked
642      * @return a flag if this node is defined
643      */
644     protected boolean nodeDefined(final T node) {
645         final DefinedVisitor<T> visitor = new DefinedVisitor<>();
646         NodeTreeWalker.INSTANCE.walkBFS(node, visitor, getModel().getNodeHandler());
647         return visitor.isDefined();
648     }
649 
650     /**
651      * Gets the {@code NodeModel} used by this configuration. This method is intended for internal use only. Access to
652      * the model is granted without any synchronization. This is in contrast to the &quot;official&quot;
653      * {@code getNodeModel()} method which is guarded by the configuration's {@code Synchronizer}.
654      *
655      * @return the node model
656      */
657     protected NodeModel<T> getModel() {
658         return nodeModel;
659     }
660 
661     /**
662      * Extracts the value from a query result.
663      *
664      * @param result the {@code QueryResult}
665      * @param handler the {@code NodeHandler}
666      * @return the value of this result (may be <b>null</b>)
667      */
668     private Object valueFromResult(final QueryResult<T> result, final NodeHandler<T> handler) {
669         return result.isAttributeResult() ? result.getAttributeValue(handler) : handler.getValue(result.getNode());
670     }
671 
672     /**
673      * A specialized visitor that checks if a node is defined. &quot;Defined&quot; in this terms means that the node or at
674      * least one of its sub nodes is associated with a value.
675      *
676      * @param <T> the type of the nodes managed by this hierarchical configuration
677      */
678     private static final class DefinedVisitor<T> extends ConfigurationNodeVisitorAdapter<T> {
679 
680         /** Stores the defined flag. */
681         private boolean defined;
682 
683         /**
684          * Checks if iteration should be stopped. This can be done if the first defined node is found.
685          *
686          * @return a flag if iteration should be stopped
687          */
688         @Override
689         public boolean terminate() {
690             return isDefined();
691         }
692 
693         /**
694          * Visits the node. Checks if a value is defined.
695          *
696          * @param node the actual node
697          */
698         @Override
699         public void visitBeforeChildren(final T node, final NodeHandler<T> handler) {
700             defined = handler.getValue(node) != null || !handler.getAttributes(node).isEmpty();
701         }
702 
703         /**
704          * Returns the defined flag.
705          *
706          * @return the defined flag
707          */
708         public boolean isDefined() {
709             return defined;
710         }
711     }
712 
713     /**
714      * A specialized visitor that fills a list with keys that are defined in a node hierarchy.
715      */
716     private final class DefinedKeysVisitor extends ConfigurationNodeVisitorAdapter<T> {
717 
718         /** Stores the list to be filled. */
719         private final Set<String> keyList;
720 
721         /** A stack with the keys of the already processed nodes. */
722         private final Stack<String> parentKeys;
723 
724         /**
725          * Default constructor.
726          */
727         public DefinedKeysVisitor() {
728             keyList = new LinkedHashSet<>();
729             parentKeys = new Stack<>();
730         }
731 
732         /**
733          * Creates a new {@code DefinedKeysVisitor} instance and sets the prefix for the keys to fetch.
734          *
735          * @param prefix the prefix
736          */
737         public DefinedKeysVisitor(final String prefix) {
738             this();
739             parentKeys.push(prefix);
740         }
741 
742         /**
743          * Gets the list with all defined keys.
744          *
745          * @return the list with the defined keys
746          */
747         public Set<String> getKeyList() {
748             return keyList;
749         }
750 
751         /**
752          * {@inheritDoc} This implementation removes this node's key from the stack.
753          */
754         @Override
755         public void visitAfterChildren(final T node, final NodeHandler<T> handler) {
756             parentKeys.pop();
757         }
758 
759         /**
760          * {@inheritDoc} If this node has a value, its key is added to the internal list.
761          */
762         @Override
763         public void visitBeforeChildren(final T node, final NodeHandler<T> handler) {
764             final String parentKey = parentKeys.isEmpty() ? null : parentKeys.peek();
765             final String key = getExpressionEngine().nodeKey(node, parentKey, handler);
766             parentKeys.push(key);
767             if (handler.getValue(node) != null) {
768                 keyList.add(key);
769             }
770             handleAttributeKeys(key, node, handler);
771         }
772 
773         /**
774          * Appends all attribute keys of the current node.
775          *
776          * @param parentKey the parent key
777          * @param node the current node
778          * @param handler the {@code NodeHandler}
779          */
780         public void handleAttributeKeys(final String parentKey, final T node, final NodeHandler<T> handler) {
781             handler.getAttributes(node).forEach(attr -> keyList.add(getExpressionEngine().attributeKey(parentKey, attr)));
782         }
783     }
784 
785     @Override
786     public String toString() {
787         return super.toString() + "(" + getRootElementNameInternal() + ")";
788     }
789 }