View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.geometry.euclidean.threed;
18  
19  import java.util.Objects;
20  
21  import org.apache.commons.geometry.core.Transform;
22  import org.apache.commons.geometry.core.partitioning.EmbeddingHyperplane;
23  import org.apache.commons.geometry.euclidean.threed.rotation.QuaternionRotation;
24  import org.apache.commons.geometry.euclidean.twod.AffineTransformMatrix2D;
25  import org.apache.commons.geometry.euclidean.twod.Vector2D;
26  import org.apache.commons.numbers.core.Precision;
27  
28  /** Extension of the {@link Plane} class that supports embedding of 2D subspaces in the plane.
29   * This is accomplished by defining two additional vectors, {@link #getU() u} and {@link #getV() v},
30   * that define the {@code x} and {@code y} axes respectively of the embedded subspace. For completeness,
31   * an additional vector {@link #getW()} is defined, which is simply an alias for the plane normal.
32   * Together, the vectors {@code u}, {@code v}, and {@code w} form a right-handed orthonormal basis.
33   *
34   * <p>The additional {@code u} and {@code v} vectors are not required to fulfill the contract of
35   * {@link org.apache.commons.geometry.core.partitioning.Hyperplane Hyperplane}. Therefore, they
36   * are not considered when using instances of this type purely as a hyperplane. For example, the
37   * {@link Plane#eq(Plane, Precision.DoubleEquivalence) eq} and
38   * {@link Plane#similarOrientation(org.apache.commons.geometry.core.partitioning.Hyperplane) similiarOrientation}
39   * methods do not consider them.</p>
40   */
41  public final class EmbeddingPlane extends Plane implements EmbeddingHyperplane<Vector3D, Vector2D> {
42      /** First normalized vector of the plane frame (in plane). */
43      private final Vector3D.Unit u;
44  
45      /** Second normalized vector of the plane frame (in plane). */
46      private final Vector3D.Unit v;
47  
48      /** Construct a new instance from an orthonormal set of basis vectors and an origin offset.
49       * @param u first vector of the basis (in plane)
50       * @param v second vector of the basis (in plane)
51       * @param w third vector of the basis (plane normal)
52       * @param originOffset offset of the origin with respect to the plane.
53       * @param precision precision context used for floating point comparisons
54       */
55      EmbeddingPlane(final Vector3D.Unit u, final Vector3D.Unit v, final Vector3D.Unit w, final double originOffset,
56                     final Precision.DoubleEquivalence precision) {
57          super(w, originOffset, precision);
58  
59          this.u = u;
60          this.v = v;
61      }
62  
63      /** Get the plane first canonical vector.
64       * <p>
65       * The frame defined by ({@link #getU u}, {@link #getV v},
66       * {@link #getW w}) is a right-handed orthonormalized frame).
67       * </p>
68       * @return normalized first canonical vector
69       * @see #getV
70       * @see #getW
71       * @see #getNormal
72       */
73      public Vector3D.Unit getU() {
74          return u;
75      }
76  
77      /** Get the plane second canonical vector.
78       * <p>
79       * The frame defined by ({@link #getU u}, {@link #getV v},
80       * {@link #getW w}) is a right-handed orthonormalized frame).
81       * </p>
82       * @return normalized second canonical vector
83       * @see #getU
84       * @see #getW
85       * @see #getNormal
86       */
87      public Vector3D.Unit getV() {
88          return v;
89      }
90  
91      /** Get the plane third canonical vector, ie, the plane normal. This
92       * method is simply an alias for {@link #getNormal()}.
93       * <p>
94       * The frame defined by {@link #getU() u}, {@link #getV() v},
95       * {@link #getW() w} is a right-handed orthonormalized frame.
96       * </p>
97       * @return normalized normal vector
98       * @see #getU()
99       * @see #getV()
100      * @see #getNormal()
101      */
102     public Vector3D.Unit getW() {
103         return getNormal();
104     }
105 
106     /** Return the current instance.
107      */
108     @Override
109     public EmbeddingPlane getEmbedding() {
110         return this;
111     }
112 
113     /** Transform a 3D space point into an in-plane point.
114      * @param point point of the space
115      * @return in-plane point
116      * @see #toSpace
117      */
118     @Override
119     public Vector2D toSubspace(final Vector3D point) {
120         return Vector2D.of(point.dot(u), point.dot(v));
121     }
122 
123     /** Transform an in-plane point into a 3D space point.
124      * @param point in-plane point
125      * @return 3D space point
126      * @see #toSubspace(Vector3D)
127      */
128     @Override
129     public Vector3D toSpace(final Vector2D point) {
130         return Vector3D.Sum.create()
131                 .addScaled(point.getX(), u)
132                 .addScaled(point.getY(), v)
133                 .addScaled(-getOriginOffset(), getNormal()).get();
134     }
135 
136     /** Get one point from the 3D-space.
137      * @param inPlane desired in-plane coordinates for the point in the plane
138      * @param offset  desired offset for the point
139      * @return one point in the 3D-space, with given coordinates and offset relative
140      *         to the plane
141      */
142     public Vector3D pointAt(final Vector2D inPlane, final double offset) {
143         return Vector3D.Sum.create()
144                 .addScaled(inPlane.getX(), u)
145                 .addScaled(inPlane.getY(), v)
146                 .addScaled(offset - getOriginOffset(), getNormal()).get();
147     }
148 
149     /** Build a new reversed version of this plane, with opposite orientation.
150      * <p>
151      * The new plane frame is chosen in such a way that a 3D point that had
152      * {@code (x, y)} in-plane coordinates and {@code z} offset with respect to the
153      * plane and is unaffected by the change will have {@code (y, x)} in-plane
154      * coordinates and {@code -z} offset with respect to the new plane. This means
155      * that the {@code u} and {@code v} vectors returned by the {@link #getU} and
156      * {@link #getV} methods are exchanged, and the {@code w} vector returned by the
157      * {@link #getNormal} method is reversed.
158      * </p>
159      * @return a new reversed plane
160      */
161     @Override
162     public EmbeddingPlane reverse() {
163         return new EmbeddingPlane(v, u, getNormal().negate(), -getOriginOffset(), getPrecision());
164     }
165 
166     /** {@inheritDoc} */
167     @Override
168     public EmbeddingPlane transform(final Transform<Vector3D> transform) {
169         final Vector3D origin = getOrigin();
170         final Vector3D plusU = origin.add(u);
171         final Vector3D plusV = origin.add(v);
172 
173         final Vector3D tOrigin = transform.apply(origin);
174         final Vector3D tPlusU = transform.apply(plusU);
175         final Vector3D tPlusV = transform.apply(plusV);
176 
177         final Vector3D.Unit tU = tOrigin.directionTo(tPlusU);
178         final Vector3D.Unit tV = tOrigin.directionTo(tPlusV);
179         final Vector3D.Unit tW = tU.cross(tV).normalize();
180 
181         final double tOriginOffset = -tOrigin.dot(tW);
182 
183         return new EmbeddingPlane(tU, tV, tW, tOriginOffset, getPrecision());
184     }
185 
186     /** Translate the plane by the specified amount.
187      * @param translation translation to apply
188      * @return a new plane
189      */
190     @Override
191     public EmbeddingPlane translate(final Vector3D translation) {
192         final Vector3D tOrigin = getOrigin().add(translation);
193 
194         return Planes.fromPointAndPlaneVectors(tOrigin, u, v, getPrecision());
195     }
196 
197     /** Rotate the plane around the specified point.
198      * @param center rotation center
199      * @param rotation 3-dimensional rotation
200      * @return a new rotated plane
201      */
202     @Override
203     public EmbeddingPlane rotate(final Vector3D center, final QuaternionRotation rotation) {
204         final Vector3D delta = getOrigin().subtract(center);
205         final Vector3D tOrigin = center.add(rotation.apply(delta));
206         final Vector3D.Unit tU = rotation.apply(u).normalize();
207         final Vector3D.Unit tV = rotation.apply(v).normalize();
208 
209         return Planes.fromPointAndPlaneVectors(tOrigin, tU, tV, getPrecision());
210     }
211 
212     /** {@inheritDoc} */
213     @Override
214     public int hashCode() {
215         return Objects.hash(getNormal(), getOriginOffset(), u, v, getPrecision());
216     }
217 
218     /** {@inheritDoc} */
219     @Override
220     public boolean equals(final Object obj) {
221         if (this == obj) {
222             return true;
223         } else if (obj == null || obj.getClass() != EmbeddingPlane.class) {
224             return false;
225         }
226 
227         final EmbeddingPlane other = (EmbeddingPlane) obj;
228 
229         return Objects.equals(this.getNormal(), other.getNormal()) &&
230                 Double.compare(this.getOriginOffset(), other.getOriginOffset()) == 0 &&
231                 Objects.equals(this.u, other.u) &&
232                 Objects.equals(this.v, other.v) &&
233                 Objects.equals(this.getPrecision(), other.getPrecision());
234     }
235 
236     /** {@inheritDoc} */
237     @Override
238     public String toString() {
239         final StringBuilder sb = new StringBuilder();
240         sb.append(getClass().getSimpleName())
241             .append("[origin= ")
242             .append(getOrigin())
243             .append(", u= ")
244             .append(u)
245             .append(", v= ")
246             .append(v)
247             .append(", w= ")
248             .append(getNormal())
249             .append(']');
250 
251         return sb.toString();
252     }
253 
254     /** Get an object containing the current plane transformed by the argument along with a
255      * 2D transform that can be applied to subspace points. The subspace transform transforms
256      * subspace points such that their 3D location in the transformed plane is the same as their
257      * 3D location in the original plane after the 3D transform is applied. For example, consider
258      * the code below:
259      * <pre>
260      *      SubspaceTransform st = plane.subspaceTransform(transform);
261      *
262      *      Vector2D subPt = Vector2D.of(1, 1);
263      *
264      *      Vector3D a = transform.apply(plane.toSpace(subPt)); // transform in 3D space
265      *      Vector3D b = st.getPlane().toSpace(st.getTransform().apply(subPt)); // transform in 2D space
266      * </pre>
267      * At the end of execution, the points {@code a} (which was transformed using the original
268      * 3D transform) and {@code b} (which was transformed in 2D using the subspace transform)
269      * are equivalent.
270      *
271      * @param transform the transform to apply to this instance
272      * @return an object containing the transformed plane along with a transform that can be applied
273      *      to subspace points
274      * @see #transform(Transform)
275      */
276     public SubspaceTransform subspaceTransform(final Transform<Vector3D> transform) {
277         final Vector3D origin = getOrigin();
278 
279         final Vector3D tOrigin = transform.apply(origin);
280         final Vector3D tPlusU = transform.apply(origin.add(u));
281         final Vector3D tPlusV = transform.apply(origin.add(v));
282 
283         final EmbeddingPlane tPlane = Planes.fromPointAndPlaneVectors(
284                 tOrigin,
285                 tOrigin.vectorTo(tPlusU),
286                 tOrigin.vectorTo(tPlusV),
287                 getPrecision());
288 
289         final Vector2D tSubspaceOrigin = tPlane.toSubspace(tOrigin);
290         final Vector2D tSubspaceU = tSubspaceOrigin.vectorTo(tPlane.toSubspace(tPlusU));
291         final Vector2D tSubspaceV = tSubspaceOrigin.vectorTo(tPlane.toSubspace(tPlusV));
292 
293         final AffineTransformMatrix2D subspaceTransform =
294                 AffineTransformMatrix2D.fromColumnVectors(tSubspaceU, tSubspaceV, tSubspaceOrigin);
295 
296         return new SubspaceTransform(tPlane, subspaceTransform);
297     }
298 
299     /** Class containing a transformed plane instance along with a subspace (2D) transform. The subspace
300      * transform produces the equivalent of the 3D transform in 2D.
301      */
302     public static final class SubspaceTransform {
303         /** The transformed plane. */
304         private final EmbeddingPlane plane;
305 
306         /** The subspace transform instance. */
307         private final AffineTransformMatrix2D transform;
308 
309         /** Simple constructor.
310          * @param plane the transformed plane
311          * @param transform 2D transform that can be applied to subspace points
312          */
313         public SubspaceTransform(final EmbeddingPlane plane, final AffineTransformMatrix2D transform) {
314             this.plane = plane;
315             this.transform = transform;
316         }
317 
318         /** Get the transformed plane instance.
319          * @return the transformed plane instance
320          */
321         public EmbeddingPlane getPlane() {
322             return plane;
323         }
324 
325         /** Get the 2D transform that can be applied to subspace points. This transform can be used
326          * to perform the equivalent of the 3D transform in 2D space.
327          * @return the subspace transform instance
328          */
329         public AffineTransformMatrix2D getTransform() {
330             return transform;
331         }
332     }
333 }